from math import cos, sin
from typing import Literal, Optional, Tuple, Union
import pytest
import jax.numpy as jnp
import numpy as np
import pandas as pd
from jax import config
from scipy.sparse import csr_matrix
import matplotlib.pyplot as plt
import anndata as ad
import scanpy as sc
from anndata import AnnData
from tests._utils import Geom_t, _make_adata, _make_grid
ANGLES = (0, 30, 60)
# TODO(michalk8): consider passing this via env
config.update("jax_enable_x64", True)
_gt_temporal_adata = sc.read("tests/data/moscot_temporal_tests.h5ad")
def pytest_sessionstart() -> None:
sc.pl.set_rcParams_defaults()
sc.set_figure_params(dpi=40, color_map="viridis")
@pytest.fixture(autouse=True)
def _close_figure():
# prevent `RuntimeWarning: More than 20 figures have been opened.`
yield
plt.close()
@pytest.fixture
def x() -> Geom_t:
rng = np.random.RandomState(0)
n = 20 # number of points in the first distribution
sig = 1 # std of first distribution
phi = np.arange(n)[:, None]
xs = phi + sig * rng.randn(n, 1)
return jnp.asarray(xs)
@pytest.fixture
def y() -> Geom_t:
rng = np.random.RandomState(1)
n2 = 30 # number of points in the second distribution
sig = 1 # std of first distribution
phi2 = np.arange(n2)[:, None]
xt = phi2 + sig * rng.randn(n2, 1)
return jnp.asarray(xt)
@pytest.fixture
def xy() -> Tuple[Geom_t, Geom_t]:
rng = np.random.RandomState(2)
n = 20 # number of points in the first distribution
n2 = 30 # number of points in the second distribution
sig = 1 # std of first distribution
sig2 = 0.1 # std of second distribution
phi = np.arange(n)[:, None]
phi + sig * rng.randn(n, 1)
ys = np.vstack((np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1)))) + sig2 * rng.randn(n, 1)
phi2 = np.arange(n2)[:, None]
phi2 + sig * rng.randn(n2, 1)
yt = np.vstack((np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1)))) + sig2 * rng.randn(n2, 1)
yt = yt[::-1, :]
return jnp.asarray(ys), jnp.asarray(yt)
@pytest.fixture
def ab() -> Tuple[np.ndarray, np.ndarray]:
rng = np.random.RandomState(42)
return rng.normal(size=(20, 2)), rng.normal(size=(30, 4))
@pytest.fixture
def x_cost(x: Geom_t) -> jnp.ndarray:
return ((x[:, None, :] - x[None, ...]) ** 2).sum(-1)
@pytest.fixture
def y_cost(y: Geom_t) -> jnp.ndarray:
return ((y[:, None, :] - y[None, ...]) ** 2).sum(-1)
@pytest.fixture
def xy_cost(xy: Geom_t) -> jnp.ndarray:
x, y = xy
return ((x[:, None, :] - y[None, ...]) ** 2).sum(-1)
@pytest.fixture
def adata_x(x: Geom_t) -> AnnData:
rng = np.random.RandomState(43)
pc = rng.normal(size=(len(x), 4))
return AnnData(X=np.asarray(x, dtype=float), obsm={"X_pca": pc})
@pytest.fixture
def adata_y(y: Geom_t) -> AnnData:
rng = np.random.RandomState(44)
pc = rng.normal(size=(len(y), 4))
return AnnData(X=np.asarray(y, dtype=float), obsm={"X_pca": pc})
def creat_prob(n: int, *, uniform: bool = False, seed: Optional[int] = None) -> Geom_t:
rng = np.random.RandomState(seed)
a = np.ones((n,)) if uniform else np.abs(rng.normal(size=(n,)))
a /= np.sum(a)
return jnp.asarray(a)
@pytest.fixture
def adata_time() -> AnnData:
rng = np.random.RandomState(42)
adatas = [
AnnData(
X=csr_matrix(rng.normal(size=(96, 60))),
obs={
"left_marginals_balanced": creat_prob(96, seed=42),
"right_marginals_balanced": creat_prob(96, seed=42),
},
)
for _ in range(3)
]
adata = ad.concat(adatas, label="time", index_unique="-")
adata.obs["time"] = pd.to_numeric(adata.obs["time"]).astype("category")
adata.obs["batch"] = rng.choice((0, 1, 2), len(adata))
adata.obs["left_marginals_unbalanced"] = np.ones(len(adata))
adata.obs["right_marginals_unbalanced"] = np.ones(len(adata))
adata.obs["celltype"] = rng.choice(["A", "B", "C"], size=len(adata))
# genes from mouse/human proliferation/apoptosis
genes = ["ANLN", "ANP32E", "ATAD2", "Mcm4", "Smc4", "Gtse1", "ADD1", "AIFM3", "ANKH", "Ercc5", "Serpinb5", "Inhbb"]
# genes which are transcription factors, 3 from drosophila, 2 from human, 1 from mouse
genes += ["Cf2", "Dlip3", "Dref", "KLF12", "ZNF143", "Zic5"]
adata.var.index = ["gene_" + el if i > len(genes) - 1 else genes[i] for i, el in enumerate(adata.var.index)]
adata.obsm["X_umap"] = rng.randn(len(adata), 2)
sc.pp.pca(adata)
return adata
@pytest.fixture
def gt_temporal_adata() -> AnnData:
adata = _gt_temporal_adata.copy()
# TODO(michalk8): remove both lines once data has been regenerated
adata.obs["day"] = pd.to_numeric(adata.obs["day"]).astype("category")
adata.obs_names_make_unique()
return adata
@pytest.fixture
def adata_space_rotate() -> AnnData:
rng = np.random.RandomState(31)
grid = _make_grid(10)
adatas = _make_adata(grid, n=len(ANGLES), seed=32)
for adata, angle in zip(adatas, ANGLES):
theta = np.deg2rad(angle)
rot = np.array([[cos(theta), -sin(theta)], [sin(theta), cos(theta)]])
adata.obsm["spatial"] = np.dot(adata.obsm["spatial"], rot)
adata = ad.concat(adatas, label="batch", index_unique="-")
adata.obs["celltype"] = rng.choice(["A", "B", "C"], size=len(adata))
adata.uns["spatial"] = {}
sc.pp.pca(adata)
return adata
@pytest.fixture
def adata_mapping() -> AnnData:
grid = _make_grid(10)
adataref, adata1, adata2 = _make_adata(grid, n=3, seed=17, cat_key="covariate", num_categories=3)
sc.pp.pca(adataref, n_comps=30)
return ad.concat([adataref, adata1, adata2], label="batch", join="outer", index_unique="-")
@pytest.fixture
def adata_translation() -> AnnData:
rng = np.random.RandomState(31)
adatas = [AnnData(X=csr_matrix(rng.normal(size=(100, 60)))) for _ in range(3)]
adata = ad.concat(adatas, label="batch", index_unique="-")
adata.obs["celltype"] = rng.choice(["A", "B", "C"], size=len(adata))
adata.obs["celltype"] = adata.obs["celltype"].astype("category")
adata.layers["counts"] = adata.X.toarray()
sc.pp.pca(adata)
return adata
@pytest.fixture
def adata_translation_split(adata_translation) -> Tuple[AnnData, AnnData]:
rng = np.random.RandomState(15)
adata_src = adata_translation[adata_translation.obs.batch != "0"].copy()
adata_tgt = adata_translation[adata_translation.obs.batch == "0"].copy()
adata_src.obsm["emb_src"] = rng.normal(size=(adata_src.shape[0], 5))
adata_tgt.obsm["emb_tgt"] = rng.normal(size=(adata_tgt.shape[0], 15))
return adata_src, adata_tgt
@pytest.fixture
def adata_anno(
problem_kind: Literal["temporal", "cross_modality", "alignment", "mapping"],
) -> Union[AnnData, Tuple[AnnData, AnnData]]:
rng = np.random.RandomState(31)
adata_src = AnnData(X=csr_matrix(rng.normal(size=(10, 60))))
rng_src = rng.choice(["A", "B", "C"], size=5).tolist()
adata_src.obs["celltype1"] = ["C", "C", "A", "B", "B"] + rng_src
adata_src.obs["celltype1"] = adata_src.obs["celltype1"].astype("category")
adata_src.uns["expected_max1"] = ["C", "C", "A", "B", "B"] + rng_src + rng_src
adata_src.uns["expected_sum1"] = ["C", "C", "B", "B", "B"] + rng_src + rng_src
adata_tgt = AnnData(X=csr_matrix(rng.normal(size=(15, 60))))
rng_tgt = rng.choice(["A", "B", "C"], size=5).tolist()
adata_tgt.obs["celltype2"] = ["C", "C", "A", "B", "B"] + rng_tgt + rng_tgt
adata_tgt.obs["celltype2"] = adata_tgt.obs["celltype2"].astype("category")
adata_tgt.uns["expected_max2"] = ["C", "C", "A", "B", "B"] + rng_tgt
adata_tgt.uns["expected_sum2"] = ["C", "C", "B", "B", "B"] + rng_tgt
if problem_kind == "cross_modality":
adata_src.obs["batch"] = "0"
adata_tgt.obs["batch"] = "1"
adata_src.obsm["emb_src"] = rng.normal(size=(adata_src.shape[0], 5))
adata_tgt.obsm["emb_tgt"] = rng.normal(size=(adata_tgt.shape[0], 15))
sc.pp.pca(adata_src)
sc.pp.pca(adata_tgt)
return adata_src, adata_tgt
if problem_kind == "mapping":
adata_src.obs["batch"] = "0"
adata_tgt.obs["batch"] = "1"
sc.pp.pca(adata_src)
sc.pp.pca(adata_tgt)
adata_tgt.obsm["spatial"] = rng.normal(size=(adata_tgt.n_obs, 2))
return adata_src, adata_tgt
if problem_kind == "alignment":
adata_src.obsm["spatial"] = rng.normal(size=(adata_src.n_obs, 2))
adata_tgt.obsm["spatial"] = rng.normal(size=(adata_tgt.n_obs, 2))
key = "day" if problem_kind == "temporal" else "batch"
adatas = [adata_src, adata_tgt]
adata = ad.concat(adatas, join="outer", label=key, index_unique="-", uns_merge="unique")
adata.obs[key] = (pd.to_numeric(adata.obs[key]) if key == "day" else adata.obs[key]).astype("category")
adata.layers["counts"] = adata.X.toarray()
sc.pp.pca(adata)
return adata
@pytest.fixture
def gt_tm_annotation() -> np.ndarray:
tm = np.zeros((10, 15))
for i in range(10):
tm[i][i] = 1
for i in range(10, 15):
tm[i - 5][i] = 1
for j in range(2, 5):
for i in range(2, 5):
tm[i][j] = 0.3 if i != j else 0.4
return tm