import re
from pathlib import Path
from typing import Any, Callable, List, Literal, Mapping, Optional, Union
import pytest
import numpy as np
import pandas as pd
import scipy.sparse as sp
from ott.solvers.linear.sinkhorn import SinkhornOutput
from ott.solvers.quadratic.gromov_wasserstein import GWOutput
import anndata as ad
import scanpy as sc
from anndata import AnnData
from moscot.backends.ott._utils import alpha_to_fused_penalty
from moscot.problems.space import MappingProblem
from moscot.utils.tagged_array import Tag, TaggedArray
from tests._utils import _adata_spatial_split
from tests.problems.conftest import (
fgw_args_1,
fgw_args_2,
geometry_args,
gw_linear_solver_args,
gw_lr_linear_solver_args,
gw_lr_solver_args,
gw_solver_args,
pointcloud_args,
quad_prob_args,
)
# TODO(michalk8): should be made relative to tests root
SOLUTIONS_PATH = Path("./tests/data/mapping_solutions.pkl") # base is moscot
class TestMappingProblem:
@pytest.mark.fast
@pytest.mark.parametrize("sc_attr", [{"attr": "X"}, {"attr": "obsm", "key": "X_pca"}])
@pytest.mark.parametrize("joint_attr", [None, "X_pca", {"attr": "obsm", "key": "X_pca"}])
@pytest.mark.parametrize("normalize_spatial", [True, False])
def test_prepare(
self,
adata_mapping: AnnData,
sc_attr: Mapping[str, str],
joint_attr: Optional[Mapping[str, str]],
normalize_spatial: bool,
):
adataref, adatasp = _adata_spatial_split(adata_mapping)
expected_keys = {(i, "ref") for i in adatasp.obs.batch.cat.categories}
n_obs = adataref.shape[0]
x_n_var = adatasp.obsm["spatial"].shape[1]
y_n_var = adataref.shape[1] if sc_attr["attr"] == "X" else adataref.obsm["X_pca"].shape[1]
xy_n_vars = adatasp.X.shape[1] if joint_attr == "default" else adataref.obsm["X_pca"].shape[1]
mp = MappingProblem(adataref, adatasp)
assert mp.problems == {}
assert mp.solutions == {}
mp = mp.prepare(batch_key="batch", sc_attr=sc_attr, joint_attr=joint_attr, normalize_spatial=normalize_spatial)
if normalize_spatial:
np.testing.assert_allclose(mp[("1", "ref")].x.data_src.std(), mp[("2", "ref")].x.data_src.std(), atol=1e-15)
np.testing.assert_allclose(mp[("1", "ref")].x.data_src.std(), 1.0, atol=1e-15)
np.testing.assert_allclose(mp[("1", "ref")].x.data_src.mean(), 0, atol=1e-15)
np.testing.assert_allclose(mp[("2", "ref")].x.data_src.mean(), 0, atol=1e-15)
assert len(mp) == len(expected_keys)
for prob_key in expected_keys:
assert isinstance(mp[prob_key], mp._base_problem_type)
assert mp[prob_key].shape == (n_obs, n_obs)
assert mp[prob_key].x.data_src.shape == (n_obs, x_n_var)
assert mp[prob_key].y.data_src.shape == (n_obs, y_n_var)
assert mp[prob_key].xy.data_src.shape == mp[prob_key].xy.data_tgt.shape == (n_obs, xy_n_vars)
# test dummy
prob_key = ("src", "tgt")
mp = mp.prepare(sc_attr=sc_attr)
assert len(mp) == 1
assert isinstance(mp[prob_key], mp._base_problem_type)
assert mp[prob_key].shape == (2 * n_obs, n_obs)
np.testing.assert_array_equal(mp._policy._cat, prob_key)
@pytest.mark.fast
@pytest.mark.parametrize("var_names", ["0", [], [str(i) for i in range(20)]])
def test_prepare_varnames(self, adata_mapping: AnnData, var_names: Optional[List[str]]):
adataref, adatasp = _adata_spatial_split(adata_mapping)
n_obs = adataref.shape[0]
x_n_var = adatasp.obsm["spatial"].shape[1]
y_n_var = adataref.shape[1] if not len(var_names) else len(var_names)
mp = MappingProblem(adataref, adatasp).prepare(batch_key="batch", sc_attr={"attr": "X"}, var_names=var_names)
for prob in mp.problems.values():
assert prob.problem_kind == "quadratic"
# this should hold after running `mp.solve()`
# assert prob.solver.is_fused is bool(var_names)
assert prob.shape == (n_obs, n_obs)
assert prob.x.data_src.shape == (n_obs, x_n_var)
assert prob.y.data_src.shape == (n_obs, y_n_var)
@pytest.mark.parametrize(
("epsilon", "alpha", "rank", "initializer"),
[(1e-2, 0.9, -1, None), (2, 0.5, 10, "random"), (2, 0.5, 10, "rank2"), (2, 0.1, -1, None)],
)
@pytest.mark.parametrize("sc_attr", [{"attr": "X"}, {"attr": "obsm", "key": "X_pca"}])
@pytest.mark.parametrize("var_names", [None, [], [str(i) for i in range(20)]])
def test_solve_balanced(
self,
adata_mapping: AnnData,
epsilon: float,
alpha: float,
rank: int,
sc_attr: Mapping[str, str],
var_names: Optional[List[str]],
initializer: Optional[Literal["random", "rank2"]],
):
adataref, adatasp = _adata_spatial_split(adata_mapping)
kwargs = {}
if rank > -1:
kwargs["initializer"] = initializer
if initializer == "random":
# kwargs["kwargs_init"] = {"key": 0}
# kwargs["key"] = 0
return # TODO(@MUCDK) fix after refactoring
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr=sc_attr, var_names=var_names)
alpha = alpha if mp.filtered_vars is not None else 1.0
mp = mp.solve(epsilon=epsilon, alpha=alpha, rank=rank, **kwargs)
for prob_key in mp:
assert mp[prob_key].solution.rank == rank
if initializer != "random": # TODO: is this valid?
assert mp[prob_key].solution.converged
assert np.allclose(*(sol.cost for sol in mp.solutions.values()))
assert np.all([sol.converged for sol in mp.solutions.values()])
assert np.all([np.all(~np.isnan(sol.transport_matrix)) for sol in mp.solutions.values()])
@pytest.mark.parametrize("key", ["connectivities", "distances"])
@pytest.mark.parametrize("geodesic_y", [True, False])
@pytest.mark.parametrize("dense_input", [True, False])
def test_geodesic_cost_xy(self, adata_mapping: AnnData, key: str, geodesic_y: bool, dense_input: bool):
adataref, adatasp = _adata_spatial_split(adata_mapping)
batch_column = "batch"
unique_batches = adatasp.obs[batch_column].unique()
dfs = []
for batch in unique_batches:
indices = np.where(adatasp.obs[batch_column] == batch)[0]
adata_spatial_subset = adatasp[indices]
adata_subset = ad.concat([adata_spatial_subset, adataref])
sc.pp.neighbors(adata_subset, n_neighbors=15, use_rep="X")
df = (
pd.DataFrame(
index=adata_subset.obs_names,
columns=adata_subset.obs_names,
data=adata_subset.obsp[key].toarray().astype("float64"),
)
if dense_input
else (
adata_subset.obsp[key].astype("float64"),
adata_subset.obs_names.to_series(),
adata_subset.obs_names.to_series(),
)
)
dfs.append(df)
if geodesic_y:
sc.pp.neighbors(adataref, n_neighbors=15, use_rep="X")
df_y = (
pd.DataFrame(
index=adataref.obs_names,
columns=adataref.obs_names,
data=adataref.obsp[key].toarray().astype("float64"),
)
if dense_input
else (
adataref.obsp[key].astype("float64"),
adataref.obs_names.to_series(),
)
)
mp: MappingProblem = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr={"attr": "X"})
mp = mp.solve(epsilon=1)
mp[("1", "ref")].set_graph_xy(dfs[0], cost="geodesic")
mp[("2", "ref")].set_graph_xy(dfs[1], cost="geodesic")
if geodesic_y:
mp[("1", "ref")].set_graph_y(df_y, cost="geodesic")
mp[("2", "ref")].set_graph_y(df_y, cost="geodesic")
mp = mp.solve(max_iterations=2)
ta = mp[("1", "ref")].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
if geodesic_y:
ta = mp[("1", "ref")].y
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
ta = mp[("2", "ref")].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
if geodesic_y:
ta = mp[("2", "ref")].y
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
@pytest.mark.parametrize("args_to_check", [fgw_args_1, fgw_args_2])
def test_pass_arguments(self, adata_mapping: AnnData, args_to_check: Mapping[str, Any]):
adataref, adatasp = _adata_spatial_split(adata_mapping)
problem = MappingProblem(adataref, adatasp)
key = ("1", "ref")
problem = problem.prepare(batch_key="batch", sc_attr={"attr": "obsm", "key": "X_pca"})
problem = problem.solve(**args_to_check)
solver = problem[key].solver.solver
args = gw_solver_args if args_to_check["rank"] == -1 else gw_lr_solver_args
for arg, val in args.items():
assert hasattr(solver, val)
if arg == "initializer":
assert isinstance(getattr(solver, val), Callable)
sinkhorn_solver = solver.linear_solver if args_to_check["rank"] == -1 else solver
lin_solver_args = gw_linear_solver_args if args_to_check["rank"] == -1 else gw_lr_linear_solver_args
tmp_dict = args_to_check["linear_solver_kwargs"] if args_to_check["rank"] == -1 else args_to_check
for arg, val in lin_solver_args.items():
el = (
getattr(sinkhorn_solver, val)[0]
if isinstance(getattr(sinkhorn_solver, val), tuple)
else getattr(sinkhorn_solver, val)
)
assert el == tmp_dict[arg], arg
quad_prob = problem[key]._solver._problem
for arg, val in quad_prob_args.items():
assert hasattr(quad_prob, val)
assert getattr(quad_prob, val) == args_to_check[arg]
assert hasattr(quad_prob, "fused_penalty")
assert quad_prob.fused_penalty == alpha_to_fused_penalty(args_to_check["alpha"])
geom = quad_prob.geom_xx
for arg, val in geometry_args.items():
assert hasattr(geom, val)
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
if arg == "epsilon":
eps_processed = getattr(geom, val)
assert eps_processed == args_to_check[arg], arg
else:
assert getattr(geom, val) == args_to_check[arg], arg
assert el == args_to_check[arg]
geom = quad_prob.geom_xy
for arg, val in pointcloud_args.items():
assert hasattr(geom, val)
assert getattr(geom, val) == args_to_check[arg]
@pytest.mark.parametrize("var_names", [None, [str(i) for i in range(20)]])
@pytest.mark.parametrize(
("sc_attr", "alpha", "problem_kind", "solution_kind"),
[
(None, 0.0, "linear", SinkhornOutput),
({"attr": "X"}, 0.5, "quadratic", GWOutput),
],
)
def test_problem_type(
self,
adata_mapping: AnnData,
var_names: Optional[List[str]],
sc_attr: Optional[Mapping[str, str]],
alpha: Optional[float],
problem_kind: Literal["linear", "quadratic"],
solution_kind: Union[SinkhornOutput, GWOutput],
):
# initialize and prepare the MappingProblem
adataref, adatasp = _adata_spatial_split(adata_mapping)
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr=sc_attr, var_names=var_names)
# check if the problem type is set correctly after `prepare`
for prob in mp.problems.values():
assert prob.problem_kind == problem_kind
# check if the problem type is set correctly after `solve`
mp = mp.solve(alpha=alpha)
for sol in mp.solutions.values():
assert isinstance(sol._output, solution_kind)
@pytest.mark.parametrize(
("sc_attr", "alpha", "raise_msg"),
[
(None, 0.5, re.escape("Expected `alpha` to be 0 for a `linear problem`.")),
({"attr": "X"}, 0, re.escape("Expected `alpha` to be in interval `(0, 1]`, found `0`.")),
],
)
def test_problem_type_corner_cases(
self, adata_mapping: AnnData, sc_attr: Optional[Mapping[str, str]], alpha: Optional[float], raise_msg: str
):
# initialize and prepare the MappingProblem
adataref, adatasp = _adata_spatial_split(adata_mapping)
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr=sc_attr)
# we test two incompatible combinations of `sc_attr` and `alpha`
with pytest.raises(ValueError, match=raise_msg):
mp.solve(alpha=alpha)