[e7f7dd]: / tests / data / generate_gt_temporal_data.py

Download this file

242 lines (203 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import sys
from typing import TYPE_CHECKING, Any, Dict, Tuple
try:
import wot # please install WOT from commit hash`ca5e94f05699997b01cf5ae13383f9810f0613f6`"
except ImportError:
raise ImportError(
"Please install WOT from commit hash`ca5e94f05699997b01cf5ae13383f9810f0613f6`"
+ "with `pip install git+https://github.com/broadinstitute/wot.git@ca5e94f05699997b01cf5ae13383f9810f0613f6`"
) from None
import os
import numpy as np
import pandas as pd
from sklearn.metrics import pairwise_distances
import scanpy as sc
from anndata import AnnData
from moscot.problems.time import TemporalProblem
eps = 0.5
lam1 = 1
lam2 = 10
key = "day"
key_1 = 10
key_2 = 10.5
key_3 = 11
local_pca = 50
tau_a = lam1 / (lam1 + eps)
tau_b = lam2 / (lam2 + eps)
seed = 42
config = {
"eps": eps,
"lam1": lam1,
"lam2": lam2,
"tau_a": tau_a,
"tau_b": tau_b,
"key": key,
"key_1": key_1,
"key_2": key_2,
"key_3": key_3,
"local_pca": local_pca,
"seed": seed,
}
def _write_config(adata: AnnData) -> AnnData:
adata.uns["eps"] = eps
adata.uns["lam1"] = lam1
adata.uns["lam2"] = lam2
adata.uns["tau_a"] = tau_a
adata.uns["tau_b"] = tau_b
adata.uns["key"] = key
adata.uns["key_1"] = key_1
adata.uns["key_2"] = key_2
adata.uns["key_3"] = key_3
adata.uns["local_pca"] = local_pca
adata.uns["seed"] = seed
return adata
def _create_adata(data_path: str) -> AnnData:
# follow instructions on https://broadinstitute.github.io/wot/ to download the data
# icb path: /lustre/groups/ml01/workspace/moscot_paper/wot_data/data
VAR_GENE_DS_PATH = os.path.join(data_path, "ExprMatrix.var.genes.h5ad")
CELL_DAYS_PATH = os.path.join(data_path, "cell_days.txt")
SERUM_CELL_IDS_PATH = os.path.join(data_path, "serum_cell_ids.txt")
CELL_SETS_PATH = os.path.join(data_path, "major_cell_sets.gmt")
adata = wot.io.read_dataset(VAR_GENE_DS_PATH, obs=[CELL_DAYS_PATH], obs_filter=SERUM_CELL_IDS_PATH)
cell_sets = wot.io.read_sets(CELL_SETS_PATH, as_dict=True)
cell_to_type = {v[i]: k for k, v in cell_sets.items() for i in range(len(v))}
df_cell_type = pd.DataFrame(cell_to_type.items(), columns=["0", "cell_type"]).set_index("0")
adata.obs = pd.merge(adata.obs, df_cell_type, how="left", left_index=True, right_index=True)
adata = adata[adata.obs["day"].isin([10, 10.5, 11])]
adata.obs["cell_type"] = adata.obs["cell_type"].fillna("unknown")
sc.pp.subsample(adata, n_obs=250, random_state=0)
return adata
def _write_analysis_output(cdata: AnnData, tp2: TemporalProblem, config: Dict[str, Any]) -> AnnData:
cdata.obs["cell_type"] = cdata.obs["cell_type"].astype("category")
cdata.uns["cell_transition_10_105_backward"] = tp2.cell_transition(
config["key_1"], config["key_2"], source_groups="cell_type", target_groups="cell_type", forward=False
)
cdata.uns["cell_transition_10_105_forward"] = tp2.cell_transition(
config["key_1"], config["key_2"], source_groups="cell_type", target_groups="cell_type", forward=True
)
cdata.uns["interpolated_distance_10_105_11"] = tp2.compute_interpolated_distance(
config["key_1"], config["key_2"], config["key_3"], seed=config["seed"], epsilon=10
)
cdata.uns["random_distance_10_105_11"] = tp2.compute_random_distance(
config["key_1"], config["key_2"], config["key_3"], seed=config["seed"], epsilon=10
)
cdata.uns["time_point_distances_10_105_11"] = list(
tp2.compute_time_point_distances(config["key_1"], config["key_2"], config["key_3"], epsilon=10)
)
cdata.uns["batch_distances_10"] = tp2.compute_batch_distances(config["key_1"], "batch", epsilon=10)
return cdata
def _prepare(adata: AnnData, config: Dict[str, Any]) -> Tuple[AnnData, pd.DataFrame, pd.DataFrame, pd.DataFrame]:
adata_12 = adata[adata.obs[config["key"]].isin([config["key_1"], config["key_2"]])].copy()
adata_23 = adata[adata.obs[config["key"]].isin([config["key_2"], config["key_3"]])].copy()
adata_13 = adata[adata.obs[config["key"]].isin([config["key_1"], config["key_3"]])].copy()
sc.tl.pca(adata_12, n_comps=config["local_pca"])
sc.tl.pca(adata_23, n_comps=config["local_pca"])
sc.tl.pca(adata_13, n_comps=config["local_pca"])
C_12 = pairwise_distances(
adata_12[adata_12.obs[config["key"]] == config["key_1"]].obsm["X_pca"],
adata_12[adata_12.obs[config["key"]] == config["key_2"]].obsm["X_pca"],
metric="sqeuclidean",
)
C_12 /= C_12.mean()
C_23 = pairwise_distances(
adata_23[adata_23.obs[config["key"]] == config["key_2"]].obsm["X_pca"],
adata_23[adata_23.obs[config["key"]] == config["key_3"]].obsm["X_pca"],
metric="sqeuclidean",
)
C_23 /= C_23.mean()
C_13 = pairwise_distances(
adata_13[adata_13.obs[config["key"]] == config["key_1"]].obsm["X_pca"],
adata_13[adata_13.obs[config["key"]] == config["key_3"]].obsm["X_pca"],
metric="sqeuclidean",
)
C_13 /= C_13.mean()
obs_names_1 = adata[adata.obs[config["key"]].isin([config["key_1"]])].obs_names
obs_names_2 = adata[adata.obs[config["key"]].isin([config["key_2"]])].obs_names
obs_names_3 = adata[adata.obs[config["key"]].isin([config["key_3"]])].obs_names
return (
adata[list(obs_names_1) + list(obs_names_2) + list(obs_names_3)].copy(),
pd.DataFrame(data=C_12, index=obs_names_1, columns=obs_names_2),
pd.DataFrame(data=C_23, index=obs_names_2, columns=obs_names_3),
pd.DataFrame(data=C_13, index=obs_names_1, columns=obs_names_3),
)
def generate_gt_temporal_data(data_path: str) -> None:
"""Generate `gt_temporal_data` for tests."""
adata = _create_adata(data_path)
cdata, C_12, C_23, C_13 = _prepare(adata, config)
if TYPE_CHECKING:
assert isinstance(config["seed"], int)
rng = np.random.RandomState(config["seed"])
cdata.obs["batch"] = rng.choice((0, 1, 2), len(cdata))
ot_model = wot.ot.OTModel(
cdata, day_field="day", epsilon=config["eps"], lambda1=config["lam1"], lambda2=config["lam2"], local_pca=0
)
tmap_wot_10_105 = ot_model.compute_transport_map(config["key_1"], config["key_2"], cost_matrix=np.array(C_12)).X
tmap_wot_105_11 = ot_model.compute_transport_map(config["key_2"], config["key_3"], cost_matrix=np.array(C_23)).X
tmap_wot_10_11 = ot_model.compute_transport_map(config["key_1"], config["key_3"], cost_matrix=np.array(C_13)).X
tp = TemporalProblem(cdata)
tp = tp.prepare(
"day",
subset=[(10, 10.5), (10.5, 11), (10, 11)],
policy="explicit",
)
tp[10, 10.5].set_xy(C_12, tag="cost_matrix")
tp[10.5, 11].set_xy(C_23, tag="cost_matrix")
tp[10, 11].set_xy(C_13, tag="cost_matrix")
tp = tp.solve(epsilon=config["eps"], tau_a=config["tau_a"], tau_b=config["tau_b"])
np.testing.assert_allclose(tp[config["key_1"], config["key_2"]].xy.data_src, C_12, atol=1e-6, rtol=1e-6)
np.testing.assert_allclose(tp[config["key_2"], config["key_3"]].xy.data_src, C_23, atol=1e-6, rtol=1e-6)
np.testing.assert_allclose(tp[config["key_1"], config["key_3"]].xy.data_src, C_13, atol=1e-6, rtol=1e-6)
np.testing.assert_array_almost_equal(
np.corrcoef(
np.array(tp[config["key_1"], config["key_2"]].solution.transport_matrix).flatten(),
tmap_wot_10_105.flatten(),
),
1.0,
)
np.testing.assert_array_almost_equal(
np.corrcoef(
np.array(tp[config["key_2"], config["key_3"]].solution.transport_matrix).flatten(),
tmap_wot_105_11.flatten(),
),
1.0,
)
np.testing.assert_array_almost_equal(
np.corrcoef(
np.array(tp[config["key_1"], config["key_3"]].solution.transport_matrix).flatten(), tmap_wot_10_11.flatten()
),
1.0,
)
cdata.uns["tmap_10_105"] = np.array(tp[config["key_1"], config["key_2"]].solution.transport_matrix)
cdata.uns["tmap_105_11"] = np.array(tp[config["key_2"], config["key_3"]].solution.transport_matrix)
cdata.uns["tmap_10_11"] = np.array(tp[config["key_1"], config["key_3"]].solution.transport_matrix)
tp2 = TemporalProblem(cdata)
tp2 = tp2.prepare(
"day",
subset=[(10, 10.5), (10.5, 11), (10, 11)],
policy="explicit",
xy_callback_kwargs={"n_comps": 50},
)
tp2 = tp2.solve(epsilon=config["eps"], tau_a=config["tau_a"], tau_b=config["tau_b"], scale_cost="mean")
np.testing.assert_allclose(
np.array(tp[config["key_1"], config["key_2"]].solution.transport_matrix),
np.array(tp2[config["key_1"], config["key_2"]].solution.transport_matrix),
rtol=1e-6,
atol=1e-6,
)
np.testing.assert_allclose(
np.array(tp[config["key_2"], config["key_3"]].solution.transport_matrix),
np.array(tp2[config["key_2"], config["key_3"]].solution.transport_matrix),
rtol=1e-6,
atol=1e-6,
)
np.testing.assert_allclose(
np.array(tp[config["key_1"], config["key_3"]].solution.transport_matrix),
np.array(tp2[config["key_1"], config["key_3"]].solution.transport_matrix),
rtol=1e-6,
atol=1e-6,
)
cdata = _write_analysis_output(cdata, tp2, config)
cdata = _write_config(cdata)
cdata.write("tests/data/moscot_temporal_tests.h5ad")
if __name__ == "__main__":
generate_gt_temporal_data(sys.argv[1])