[6ff4a8]: / tests / problems / time / test_lineage_problem.py

Download this file

271 lines (228 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from typing import Any, Callable, List, Mapping
import pytest
import numpy as np
from anndata import AnnData
from moscot.backends.ott._utils import alpha_to_fused_penalty
from moscot.base.output import BaseDiscreteSolverOutput
from moscot.base.problems import BirthDeathProblem
from moscot.problems.time import LineageProblem
from tests._utils import ATOL, RTOL
from tests.problems.conftest import (
fgw_args_1,
fgw_args_2,
geometry_args,
gw_linear_solver_args,
gw_lr_linear_solver_args,
gw_lr_solver_args,
gw_solver_args,
pointcloud_args,
quad_prob_args,
)
class TestLineageProblem:
@pytest.mark.fast
def test_prepare(self, adata_time_barcodes: AnnData):
expected_keys = [(0, 1), (1, 2)]
problem = LineageProblem(adata=adata_time_barcodes)
assert len(problem) == 0
assert problem.problems == {}
assert problem.solutions == {}
problem = problem.prepare(
time_key="time",
policy="sequential",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
)
assert isinstance(problem.problems, dict)
assert len(problem.problems) == len(expected_keys)
for key in problem:
assert key in expected_keys
assert isinstance(problem[key], BirthDeathProblem)
def test_solve_balanced(self, adata_time_barcodes: AnnData):
eps, key = 0.5, (0, 1)
adata_time_barcodes = adata_time_barcodes[adata_time_barcodes.obs["time"].isin(key)].copy()
problem = LineageProblem(adata=adata_time_barcodes)
problem = problem.prepare(
time_key="time",
policy="sequential",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
)
problem = problem.solve(epsilon=eps)
for _, subsol in problem.solutions.items():
assert isinstance(subsol, BaseDiscreteSolverOutput)
def test_solve_unbalanced(self, adata_time_barcodes: AnnData):
taus = [9e-1, 1e-2]
adata_time_barcodes = adata_time_barcodes[adata_time_barcodes.obs["time"].isin((0, 1))]
problem1 = LineageProblem(adata=adata_time_barcodes)
problem1 = problem1.prepare(
time_key="time",
policy="sequential",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
)
problem2 = LineageProblem(adata=adata_time_barcodes)
problem2 = problem2.prepare(
time_key="time",
policy="sequential",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
)
assert problem1[0, 1].a is not None
assert problem1[0, 1].b is not None
assert problem2[0, 1].a is not None
assert problem2[0, 1].b is not None
problem1 = problem1.solve(epsilon=1, tau_a=taus[0], tau_b=taus[0], max_iterations=100)
problem2 = problem2.solve(epsilon=1, tau_a=taus[1], tau_b=taus[1], max_iterations=100)
assert problem1[0, 1].solution.a is not None
assert problem1[0, 1].solution.b is not None
assert problem2[0, 1].solution.a is not None
assert problem2[0, 1].solution.b is not None
div1 = np.linalg.norm(problem1[0, 1].a - problem1[0, 1].solution.a)
div2 = np.linalg.norm(problem1[0, 1].b - problem1[0, 1].solution.b)
assert div1 < div2
@pytest.mark.fast
@pytest.mark.parametrize(
"gene_set_list",
[
[None, None],
["human", "human"],
["mouse", "mouse"],
[["ANLN", "ANP32E", "ATAD2"], ["ADD1", "AIFM3", "ANKH"]],
],
)
def test_score_genes(self, adata_time_barcodes: AnnData, gene_set_list: List[List[str]]):
gene_set_proliferation = gene_set_list[0]
gene_set_apoptosis = gene_set_list[1]
problem = LineageProblem(adata_time_barcodes)
problem.score_genes_for_marginals(
gene_set_proliferation=gene_set_proliferation, gene_set_apoptosis=gene_set_apoptosis
)
if gene_set_apoptosis is not None:
assert problem.proliferation_key == "proliferation"
assert adata_time_barcodes.obs["proliferation"] is not None
assert np.sum(np.isnan(adata_time_barcodes.obs["proliferation"])) == 0
else:
assert problem.proliferation_key is None
if gene_set_apoptosis is not None:
assert problem.apoptosis_key == "apoptosis"
assert adata_time_barcodes.obs["apoptosis"] is not None
assert np.sum(np.isnan(adata_time_barcodes.obs["apoptosis"])) == 0
else:
assert problem.apoptosis_key is None
@pytest.mark.fast
def test_proliferation_key_pipeline(self, adata_time_barcodes: AnnData):
problem = LineageProblem(adata_time_barcodes)
assert problem.proliferation_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.proliferation_key == "proliferation"
adata_time_barcodes.obs["new_proliferation"] = np.ones(adata_time_barcodes.n_obs)
problem.proliferation_key = "new_proliferation"
assert problem.proliferation_key == "new_proliferation"
@pytest.mark.fast
def test_apoptosis_key_pipeline(self, adata_time_barcodes: AnnData):
problem = LineageProblem(adata_time_barcodes)
assert problem.apoptosis_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.apoptosis_key == "apoptosis"
adata_time_barcodes.obs["new_apoptosis"] = np.ones(adata_time_barcodes.n_obs)
problem.apoptosis_key = "new_apoptosis"
assert problem.apoptosis_key == "new_apoptosis"
@pytest.mark.fast
@pytest.mark.parametrize("scaling", [0.1, 1, 4])
def test_proliferation_key_c_pipeline(self, adata_time_barcodes: AnnData, scaling: float):
key0, key1, *_ = np.sort(np.unique(adata_time_barcodes.obs["time"].values))
adata_time_barcodes = adata_time_barcodes[adata_time_barcodes.obs["time"].isin([key0, key1])].copy()
delta = key1 - key0
problem = LineageProblem(adata_time_barcodes)
assert problem.proliferation_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.proliferation_key == "proliferation"
problem = problem.prepare(
time_key="time",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
policy="sequential",
marginal_kwargs={"scaling": scaling},
)
prolif = adata_time_barcodes[adata_time_barcodes.obs["time"] == key0].obs["proliferation"]
apopt = adata_time_barcodes[adata_time_barcodes.obs["time"] == key0].obs["apoptosis"]
expected_marginals = np.exp((prolif - apopt) * delta / scaling)
np.testing.assert_allclose(problem[key0, key1]._prior_growth, expected_marginals, rtol=RTOL, atol=ATOL)
@pytest.mark.fast
def test_barcodes_pipeline(self, adata_time_barcodes: AnnData):
expected_keys = [(0, 1), (1, 2)]
problem = LineageProblem(adata=adata_time_barcodes)
problem = problem.prepare(
time_key="time",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
policy="sequential",
)
problem = problem.solve(max_iterations=2)
for key in problem:
assert key in expected_keys
assert isinstance(problem[key], problem._base_problem_type)
def test_custom_cost_pipeline(self, adata_time_custom_cost_xy: AnnData):
expected_keys = [(0, 1), (1, 2)]
problem = LineageProblem(adata=adata_time_custom_cost_xy)
problem = problem.prepare(time_key="time")
problem = problem.solve(max_iterations=2)
for key in problem:
assert key in expected_keys
assert isinstance(problem[key], BirthDeathProblem)
def test_trees_pipeline(self, adata_time_trees: AnnData):
expected_keys = [(0, 1), (1, 2)]
problem = LineageProblem(adata=adata_time_trees)
problem = problem.prepare(
time_key="time", lineage_attr={"attr": "uns", "key": "trees", "tag": "cost_matrix", "cost": "leaf_distance"}
)
problem = problem.solve(max_iterations=2)
for key in problem:
assert key in expected_keys
assert isinstance(problem[key], BirthDeathProblem)
def test_cell_costs_pipeline(self, adata_time_custom_cost_xy: AnnData):
problem = LineageProblem(adata=adata_time_custom_cost_xy)
problem = problem.prepare("time")
problem = problem.solve(max_iterations=1)
assert problem.cell_costs_source is None
assert problem.cell_costs_target is None
@pytest.mark.parametrize("args_to_check", [fgw_args_1, fgw_args_2])
def test_pass_arguments(self, adata_time_barcodes: AnnData, args_to_check: Mapping[str, Any]):
problem = LineageProblem(adata=adata_time_barcodes)
problem = problem.prepare(
time_key="time",
policy="sequential",
lineage_attr={"attr": "obsm", "key": "barcodes", "tag": "cost_matrix", "cost": "barcode_distance"},
)
problem = problem.solve(**args_to_check)
key = (0, 1)
solver = problem[key].solver.solver
args = gw_solver_args if args_to_check["rank"] == -1 else gw_lr_solver_args
for arg, val in args.items():
assert hasattr(solver, val)
if arg == "initializer":
assert isinstance(getattr(solver, val), Callable)
sinkhorn_solver = solver.linear_solver if args_to_check["rank"] == -1 else solver
lin_solver_args = gw_linear_solver_args if args_to_check["rank"] == -1 else gw_lr_linear_solver_args
tmp_dict = args_to_check["linear_solver_kwargs"] if args_to_check["rank"] == -1 else args_to_check
for arg, val in lin_solver_args.items():
el = (
getattr(sinkhorn_solver, val)[0]
if isinstance(getattr(sinkhorn_solver, val), tuple)
else getattr(sinkhorn_solver, val)
)
assert el == tmp_dict[arg], arg
quad_prob = problem[key]._solver._problem
for arg, val in quad_prob_args.items():
assert hasattr(quad_prob, val)
assert getattr(quad_prob, val) == args_to_check[arg]
assert hasattr(quad_prob, "fused_penalty")
assert quad_prob.fused_penalty == alpha_to_fused_penalty(args_to_check["alpha"])
geom = quad_prob.geom_xx
for arg, val in geometry_args.items():
assert hasattr(geom, val)
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
if arg == "epsilon":
eps_processed = getattr(geom, val)
assert eps_processed == args_to_check[arg], arg
else:
assert getattr(geom, val) == args_to_check[arg], arg
assert el == args_to_check[arg]
geom = quad_prob.geom_xy
for arg, val in pointcloud_args.items():
assert hasattr(geom, val)
assert getattr(geom, val) == args_to_check[arg]