[6ff4a8]: / tests / problems / space / test_mixins.py

Download this file

243 lines (217 with data), 11.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import pickle
from math import acos
from pathlib import Path
from typing import Dict, List, Optional
import pytest
import numpy as np
import pandas as pd
from anndata import AnnData
from moscot.problems.space import AlignmentProblem, MappingProblem
from tests._utils import MockSolverOutput, _adata_spatial_split
from tests.conftest import ANGLES
# TODO(giovp): refactor as fixture
SOLUTIONS_PATH_ALIGNMENT = Path(__file__).parent.parent.parent / "data/alignment_solutions.pkl" # base is moscot
SOLUTIONS_PATH_MAPPING = Path(__file__).parent.parent.parent / "data/mapping_solutions.pkl"
class TestSpatialAlignmentAnalysisMixin:
def test_analysis(self, adata_space_rotate: AnnData):
import scanpy as sc
adata_ref = adata_space_rotate.copy()
sc.pp.subsample(adata_ref, fraction=0.9)
problem = AlignmentProblem(adata=adata_ref).prepare(batch_key="batch").solve(epsilon=1e-1)
categories = adata_space_rotate.obs.batch.cat.categories
for ref in categories:
problem.align(reference=ref, mode="affine", key_added="spatial_affine")
problem.align(reference=ref, mode="warp", key_added="spatial_warp")
tgts = set(categories) - set(ref)
for c in zip(tgts):
assert (
adata_ref[adata_ref.obs.batch == c].obsm["spatial_warp"].shape
== adata_ref[adata_ref.obs.batch == c].obsm["spatial_affine"].shape
)
angles = sorted(
round(np.rad2deg(acos(arr[0, 0])), 3)
for arr in adata_ref.uns["spatial_affine"]["alignment_metadata"].values()
if isinstance(arr, np.ndarray)
)
assert np.sum(angles) <= np.sum(ANGLES) + 2
problem.align(reference=ref, mode="affine", spatial_key="spatial")
for c in zip(tgts):
assert (
adata_ref[adata_ref.obs.batch == c].obsm["spatial_affine"].shape
== adata_ref[adata_ref.obs.batch == c].obsm["spatial"].shape
)
def test_regression_testing(self, adata_space_rotate: AnnData):
ap = AlignmentProblem(adata=adata_space_rotate).prepare(batch_key="batch").solve(alpha=0.5, epsilon=1)
# TODO(giovp): unnecessary assert
assert SOLUTIONS_PATH_ALIGNMENT.exists()
with open(SOLUTIONS_PATH_ALIGNMENT, "rb") as fname:
sol = pickle.load(fname)
assert sol.keys() == ap.solutions.keys()
for k in sol:
np.testing.assert_almost_equal(sol[k].cost, ap.solutions[k].cost, decimal=1)
np.testing.assert_almost_equal(
np.array(sol[k].transport_matrix), np.array(ap.solutions[k].transport_matrix), decimal=3
)
@pytest.mark.fast
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
def test_cell_transition_pipeline(self, adata_space_rotate: AnnData, forward: bool, normalize: bool):
rng = np.random.RandomState(0)
adata_space_rotate.obs["celltype"] = rng.choice(["a", "b", "c"], len(adata_space_rotate))
adata_space_rotate.obs["celltype"] = adata_space_rotate.obs["celltype"].astype("category")
# TODO(@MUCDK) use MockSolverOutput if no regression test
ap = AlignmentProblem(adata=adata_space_rotate)
ap = ap.prepare(batch_key="batch")
mock_tmap = np.abs(
rng.randn(
len(adata_space_rotate[adata_space_rotate.obs["batch"] == "1"]),
len(adata_space_rotate[adata_space_rotate.obs["batch"] == "2"]),
)
)
ap[("1", "2")]._solution = MockSolverOutput(mock_tmap / mock_tmap.sum().sum())
result = ap.cell_transition(
source="1",
target="2",
source_groups="celltype",
target_groups="celltype",
forward=forward,
normalize=normalize,
)
assert isinstance(result, pd.DataFrame)
assert result.shape == (3, 3)
@pytest.mark.fast
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("mapping_mode", ["max", "sum"])
@pytest.mark.parametrize("batch_size", [3, 7, None])
@pytest.mark.parametrize("problem_kind", ["alignment"])
def test_annotation_mapping(self, adata_anno: AnnData, forward: bool, mapping_mode, batch_size, gt_tm_annotation):
ap = AlignmentProblem(adata=adata_anno)
ap = ap.prepare(batch_key="batch", joint_attr={"attr": "X"})
problem_keys = ("0", "1")
assert set(ap.problems.keys()) == {problem_keys}
ap[problem_keys].set_solution(MockSolverOutput(gt_tm_annotation))
annotation_label = "celltype1" if forward else "celltype2"
result = ap.annotation_mapping(
mapping_mode=mapping_mode,
annotation_label=annotation_label,
source="0",
target="1",
forward=forward,
batch_size=batch_size,
)
if forward:
expected_result = (
adata_anno.uns["expected_max1"] if mapping_mode == "max" else adata_anno.uns["expected_sum1"]
)
else:
expected_result = (
adata_anno.uns["expected_max2"] if mapping_mode == "max" else adata_anno.uns["expected_sum2"]
)
assert (result[annotation_label] == expected_result).all()
class TestSpatialMappingAnalysisMixin:
@pytest.mark.parametrize("sc_attr", [{"attr": "X"}, {"attr": "obsm", "key": "X_pca"}])
@pytest.mark.parametrize("var_names", ["0", [str(i) for i in range(20)]])
@pytest.mark.parametrize("groupby", [None, "covariate"])
@pytest.mark.parametrize("batch_size", [None, 7, 10, 100])
def test_analysis(
self,
adata_mapping: AnnData,
sc_attr: Dict[str, str],
var_names: Optional[List[Optional[str]]],
groupby: Optional[str],
batch_size: Optional[int],
):
adataref, adatasp = _adata_spatial_split(adata_mapping)
mp = MappingProblem(adataref, adatasp).prepare(batch_key="batch", sc_attr=sc_attr).solve()
corr = mp.correlate(var_names, groupby=groupby, batch_size=batch_size)
imp = mp.impute(batch_size=batch_size)
if groupby:
for key in adata_mapping.obs[groupby].cat.categories:
pd.testing.assert_series_equal(*[corr[problem][key] for problem in corr])
else:
pd.testing.assert_series_equal(*list(corr.values()))
assert imp.shape == adatasp.shape
def test_correspondence(
self,
adata_mapping: AnnData,
):
adataref, adatasp = _adata_spatial_split(adata_mapping)
df = (
MappingProblem(adataref, adatasp)
.prepare(batch_key="batch", sc_attr={"attr": "X"})
.spatial_correspondence(interval=[3, 4])
)
assert "batch" in df.columns
np.testing.assert_array_equal(df["batch"].cat.categories, adatasp.obs["batch"].cat.categories)
df2 = (
MappingProblem(adataref, adatasp)
.prepare(batch_key="batch", sc_attr={"attr": "X"})
.spatial_correspondence(attr={"attr": "obsm", "key": "spatial"}, interval=[3, 4])
)
np.testing.assert_array_equal(df.index_interval.cat.categories, df2.index_interval.cat.categories)
df3 = MappingProblem(adataref, adatasp).prepare(sc_attr={"attr": "X"}).spatial_correspondence(interval=[2, 3])
np.testing.assert_array_equal(df3.value_interval.unique(), (2, 3))
def test_regression_testing(self, adata_mapping: AnnData):
adataref, adatasp = _adata_spatial_split(adata_mapping)
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr={"attr": "X"})
mp = mp.solve()
assert SOLUTIONS_PATH_MAPPING.exists()
with open(SOLUTIONS_PATH_MAPPING, "rb") as fname:
sol = pickle.load(fname)
assert sol.keys() == mp.solutions.keys()
for k in sol:
np.testing.assert_almost_equal(sol[k].cost, mp.solutions[k].cost, decimal=1)
np.testing.assert_almost_equal(
np.array(sol[k].transport_matrix), np.array(mp.solutions[k].transport_matrix), decimal=3
)
@pytest.mark.fast
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("normalize", [True, False])
def test_cell_transition_pipeline(self, adata_mapping: AnnData, forward: bool, normalize: bool):
rng = np.random.RandomState(0)
adataref, adatasp = _adata_spatial_split(adata_mapping)
adatasp.obs["celltype"] = rng.choice(["a", "b", "c"], len(adatasp))
adatasp.obs["celltype"] = adatasp.obs["celltype"].astype("category")
adataref.obs["celltype"] = rng.choice(["d", "e", "f", "g"], len(adataref))
adataref.obs["celltype"] = adataref.obs["celltype"].astype("category")
# TODO(@MUCDK) use MockSolverOutput if no regression test
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(batch_key="batch", sc_attr={"attr": "obsm", "key": "X_pca"})
# mp = mp.solve()
mock_tmap = np.abs(rng.randn(len(adatasp[adatasp.obs["batch"] == "1"]), len(adataref)))
mp[("1", "ref")]._solution = MockSolverOutput(mock_tmap / np.sum(mock_tmap))
result = mp.cell_transition(
source="1",
source_groups="celltype",
target_groups="celltype",
forward=forward,
normalize=normalize,
)
assert isinstance(result, pd.DataFrame)
assert result.shape == (3, 4)
@pytest.mark.fast
@pytest.mark.parametrize("forward", [True, False])
@pytest.mark.parametrize("mapping_mode", ["max", "sum"])
@pytest.mark.parametrize("batch_size", [3, 7, None])
@pytest.mark.parametrize("problem_kind", ["mapping"])
def test_annotation_mapping(self, adata_anno: AnnData, forward: bool, mapping_mode, batch_size, gt_tm_annotation):
adataref, adatasp = adata_anno
mp = MappingProblem(adataref, adatasp)
mp = mp.prepare(sc_attr={"attr": "obsm", "key": "X_pca"}, joint_attr={"attr": "X"})
problem_keys = ("src", "tgt")
assert set(mp.problems.keys()) == {problem_keys}
mp[problem_keys].set_solution(MockSolverOutput(gt_tm_annotation.T))
annotation_label = "celltype1" if not forward else "celltype2"
result = mp.annotation_mapping(
mapping_mode=mapping_mode,
annotation_label=annotation_label,
source="src",
forward=forward,
batch_size=batch_size,
)
if not forward:
expected_result = adataref.uns["expected_max1"] if mapping_mode == "max" else adataref.uns["expected_sum1"]
else:
expected_result = adatasp.uns["expected_max2"] if mapping_mode == "max" else adatasp.uns["expected_sum2"]
assert (result[annotation_label] == expected_result).all()