from pathlib import Path
from typing import Any, Callable, Literal, Mapping, Optional
import pytest
import numpy as np
import pandas as pd
import scipy.sparse as sp
from scipy.spatial.distance import pdist, squareform
import scanpy as sc
from anndata import AnnData
from moscot.backends.ott._utils import alpha_to_fused_penalty
from moscot.problems.space import AlignmentProblem
from moscot.utils.tagged_array import Tag, TaggedArray
from tests.problems.conftest import (
fgw_args_1,
fgw_args_2,
geometry_args,
gw_linear_solver_args,
gw_lr_linear_solver_args,
gw_lr_solver_args,
gw_solver_args,
pointcloud_args,
quad_prob_args,
)
# TODO(giovp): refactor as fixture
SOLUTIONS_PATH = Path("./tests/data/alignment_solutions.pkl") # base is moscot
class TestAlignmentProblem:
@pytest.mark.fast
@pytest.mark.parametrize("joint_attr", [{"attr": "X"}])
@pytest.mark.parametrize("normalize_spatial", [True, False])
def test_prepare_sequential(
self,
adata_space_rotate: AnnData,
joint_attr: Optional[Mapping[str, Any]],
normalize_spatial: bool,
):
n_obs = adata_space_rotate.shape[0] // 3 # adata is made of 3 datasets
n_var = adata_space_rotate.shape[1]
expected_keys = {("0", "1"), ("1", "2")}
ap = AlignmentProblem(adata=adata_space_rotate)
assert len(ap) == 0
assert ap.problems == {}
assert ap.solutions == {}
ap = ap.prepare(batch_key="batch", joint_attr=joint_attr, normalize_spatial=normalize_spatial)
assert len(ap) == 2
if normalize_spatial:
np.testing.assert_allclose(ap[("1", "2")].x.data_src.std(), ap[("0", "1")].x.data_src.std(), atol=1e-15)
np.testing.assert_allclose(ap[("1", "2")].x.data_src.std(), 1.0, atol=1e-15)
np.testing.assert_allclose(ap[("1", "2")].x.data_src.mean(), 0, atol=1e-15)
np.testing.assert_allclose(ap[("0", "1")].x.data_src.mean(), 0, atol=1e-15)
for prob_key in expected_keys:
assert isinstance(ap[prob_key], ap._base_problem_type)
assert ap[prob_key].shape == (n_obs, n_obs)
assert ap[prob_key].x.data_src.shape == ap[prob_key].y.data_src.shape == (n_obs, 2)
assert ap[prob_key].xy.data_src.shape == ap[prob_key].xy.data_tgt.shape == (n_obs, n_var)
@pytest.mark.fast
@pytest.mark.parametrize("reference", ["0", "1", "2"])
def test_prepare_star(self, adata_space_rotate: AnnData, reference: str):
ap = AlignmentProblem(adata=adata_space_rotate)
assert len(ap) == 0
assert ap.problems == {}
assert ap.solutions == {}
ap = ap.prepare(batch_key="batch", policy="star", reference=reference)
for prob_key in ap:
_, ref = prob_key
assert ref == reference
assert isinstance(ap[prob_key], ap._base_problem_type)
@pytest.mark.parametrize(
("epsilon", "alpha", "rank", "initializer", "should_raise"),
[
(1, 0.9, -1, None, False),
(1, 0.5, 10, "random", False),
(1, 0.5, 10, "rank2", False),
(0.1, 0.1, -1, None, False),
(0.1, -0.1, -1, None, True), # Invalid alpha
(0.1, 1.1, -1, None, True), # Invalid alpha
],
)
def test_solve_balanced(
self,
adata_space_rotate: AnnData,
epsilon: float,
alpha: float,
rank: int,
initializer: Optional[Literal["random", "rank2"]],
should_raise: bool,
):
kwargs = {}
if rank > -1:
kwargs["initializer"] = initializer
if initializer == "random":
# kwargs["kwargs_init"] = {"key": 0}
# kwargs["key"] = 0
return # TODO(@MUCDK) fix after refactoring
ap = AlignmentProblem(adata=adata_space_rotate).prepare(batch_key="batch")
if should_raise:
with pytest.raises(ValueError, match=r"Expected `alpha`"):
ap.solve(epsilon=epsilon, alpha=alpha, rank=rank, **kwargs)
else:
ap = ap.solve(epsilon=epsilon, alpha=alpha, rank=rank, **kwargs)
for prob_key in ap:
assert ap[prob_key].solution.rank == rank
if initializer != "random": # TODO: is this valid?
assert ap[prob_key].solution.converged
# TODO(michalk8): use np.testing
assert np.allclose(*(sol.cost for sol in ap.solutions.values()))
assert np.all([sol.converged for sol in ap.solutions.values()])
np.testing.assert_array_equal(
[np.all(np.isfinite(sol.transport_matrix)) for sol in ap.solutions.values()], True
)
def test_solve_unbalanced(self, adata_space_rotate: AnnData):
tau_a, tau_b = [0.8, 1]
marg_a = "a"
marg_b = "b"
adata_space_rotate.obs[marg_a] = adata_space_rotate.obs[marg_b] = np.ones(300)
ap: AlignmentProblem = (
AlignmentProblem(adata=adata_space_rotate)
.prepare(batch_key="batch", a=marg_a, b=marg_b)
.solve(tau_a=tau_a, tau_b=tau_b)
)
assert np.all([sol.a is not None for sol in ap.solutions.values()])
assert np.all([sol.b is not None for sol in ap.solutions.values()])
assert np.all([sol.converged for sol in ap.solutions.values()])
assert np.allclose(*(sol.cost for sol in ap.solutions.values()), rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize("key", ["connectivities", "distances"])
@pytest.mark.parametrize("dense_input", [True, False])
def test_geodesic_cost_xy(self, adata_space_rotate: AnnData, key: str, dense_input: bool):
batch_column = "batch"
unique_batches = adata_space_rotate.obs[batch_column].unique()
dfs = []
for i in range(len(unique_batches) - 1):
batch1 = unique_batches[i]
batch2 = unique_batches[i + 1]
indices = np.where(
(adata_space_rotate.obs[batch_column] == batch1) | (adata_space_rotate.obs[batch_column] == batch2)
)[0]
adata_subset = adata_space_rotate[indices]
sc.pp.neighbors(adata_subset, n_neighbors=15, use_rep="X_pca")
df = (
pd.DataFrame(
index=adata_subset.obs_names,
columns=adata_subset.obs_names,
data=adata_subset.obsp[key].toarray().astype("float64"),
)
if dense_input
else (
adata_subset.obsp[key].astype("float64"),
adata_subset.obs_names.to_series(),
adata_subset.obs_names.to_series(),
)
)
dfs.append(df)
ap: AlignmentProblem = AlignmentProblem(adata=adata_space_rotate)
ap = ap.prepare(batch_key=batch_column, joint_attr={"attr": "obsm", "key": "X_pca"})
ap[("0", "1")].set_graph_xy(dfs[0], cost="geodesic")
ap[("1", "2")].set_graph_xy(dfs[1], cost="geodesic")
ap = ap.solve(max_iterations=2)
ta = ap[("0", "1")].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
ta = ap[("1", "2")].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray) if dense_input else sp.issparse(ta.data_src)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
@pytest.mark.parametrize("args_to_check", [fgw_args_1, fgw_args_2])
def test_pass_arguments(self, adata_space_rotate: AnnData, args_to_check: Mapping[str, Any]):
adata_space_rotate = adata_space_rotate[adata_space_rotate.obs["batch"].isin(("0", "1"))]
key = ("0", "1")
problem = AlignmentProblem(adata=adata_space_rotate)
problem = problem.prepare(batch_key="batch", joint_attr={"attr": "X"})
problem = problem.solve(**args_to_check)
solver = problem[key].solver.solver
args = gw_solver_args if args_to_check["rank"] == -1 else gw_lr_solver_args
for arg, val in args.items():
assert hasattr(solver, val)
if arg == "initializer":
assert isinstance(getattr(solver, val), Callable)
else:
assert getattr(solver, val) == args_to_check[arg]
sinkhorn_solver = solver.linear_solver if args_to_check["rank"] == -1 else solver
lin_solver_args = gw_linear_solver_args if args_to_check["rank"] == -1 else gw_lr_linear_solver_args
tmp_dict = args_to_check["linear_solver_kwargs"] if args_to_check["rank"] == -1 else args_to_check
for arg, val in lin_solver_args.items():
el = (
getattr(sinkhorn_solver, val)[0]
if isinstance(getattr(sinkhorn_solver, val), tuple)
else getattr(sinkhorn_solver, val)
)
assert el == tmp_dict[arg], arg
quad_prob = problem[key]._solver._problem
for arg, val in quad_prob_args.items():
assert hasattr(quad_prob, val)
assert getattr(quad_prob, val) == args_to_check[arg]
assert hasattr(quad_prob, "fused_penalty")
assert quad_prob.fused_penalty == alpha_to_fused_penalty(args_to_check["alpha"])
geom = quad_prob.geom_xx
for arg, val in geometry_args.items():
assert hasattr(geom, val)
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
if arg == "epsilon":
eps_processed = getattr(geom, val)
assert eps_processed == args_to_check[arg], arg
else:
assert getattr(geom, val) == args_to_check[arg], arg
assert el == args_to_check[arg]
geom = quad_prob.geom_xy
for arg, val in pointcloud_args.items():
assert hasattr(geom, val)
assert getattr(geom, val) == args_to_check[arg]
@pytest.mark.parametrize("policy_and_reference", [("star", "0"), ("star", "1"), ("sequential", "0")])
def test_alignment_order_preservation(self, adata_space_rotate: AnnData, policy_and_reference):
policy, reference = policy_and_reference
threshold = 0.6
sc.pp.subsample(adata_space_rotate, fraction=0.99)
ap: AlignmentProblem = AlignmentProblem(adata=adata_space_rotate)
ap = ap.prepare(batch_key="batch", joint_attr={"attr": "X"}, policy=policy, reference=reference)
ap = ap.solve(alpha=0.5, epsilon=1, rank=-1)
assert np.all([sol.converged for sol in ap.solutions.values()])
ap.align(key_added="spatial_warped", mode="warp", reference=reference)
for batch in adata_space_rotate.obs["batch"].unique():
mask = adata_space_rotate.obs["batch"] == batch
aligned_coords = adata_space_rotate.obsm["spatial_warped"][mask]
original_coords = adata_space_rotate.obsm["spatial"][mask]
original_dist = squareform(pdist(original_coords)).ravel()
aligned_dist = squareform(pdist(aligned_coords)).ravel()
distance_correlation = np.corrcoef(original_dist, aligned_dist)[0, 1]
assert distance_correlation > threshold, f"Batch {batch}, distance correlation: {distance_correlation}"
if reference == batch:
assert np.isclose(
distance_correlation, 1.0, atol=1e-5
), f"The reference batch {batch} should not be warped, correlation: {distance_correlation}"
else:
assert distance_correlation < 1.0, f"Batch {batch}, distance correlation: {distance_correlation}"