from typing import Any, Callable, Literal, Mapping
import pytest
import numpy as np
import pandas as pd
from ott.geometry.costs import Cosine, Euclidean, PNormP, SqEuclidean, SqPNorm
from ott.solvers.linear import acceleration
from anndata import AnnData
from moscot._types import CostKwargs_t
from moscot.base.output import BaseDiscreteSolverOutput
from moscot.base.problems import OTProblem
from moscot.problems.generic import GWProblem
from tests._utils import _assert_marginals_set
from tests.problems.conftest import (
geometry_args,
gw_args_1,
gw_args_2,
gw_linear_solver_args,
gw_lr_linear_solver_args,
gw_lr_solver_args,
gw_solver_args,
quad_prob_args,
)
class TestGWProblem:
@pytest.mark.fast
@pytest.mark.parametrize(
"policy",
["sequential", "star"],
)
def test_prepare(self, adata_space_rotate: AnnData, policy):
expected_keys = {
"sequential": [("0", "1"), ("1", "2")],
"star": [("1", "0"), ("2", "0")],
}
problem = GWProblem(adata=adata_space_rotate)
assert len(problem) == 0
assert problem.problems == {}
assert problem.solutions == {}
problem = problem.prepare(
key="batch",
policy=policy,
reference="0",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
)
assert isinstance(problem.problems, dict)
assert len(problem.problems) == len(expected_keys[policy])
for key in problem:
assert key in expected_keys[policy]
assert isinstance(problem[key], OTProblem)
def test_solve_balanced(self, adata_space_rotate: AnnData): # type: ignore[no-untyped-def]
eps = 0.5
expected_keys = [("0", "1"), ("1", "2")]
problem = GWProblem(adata=adata_space_rotate)
problem = problem.prepare(
key="batch",
policy="sequential",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
)
problem = problem.solve(epsilon=eps)
for key, subsol in problem.solutions.items():
assert isinstance(subsol, BaseDiscreteSolverOutput)
assert key in expected_keys
assert problem[key].solver._problem.geom_xy is None
# assert prior and posterior marginals are the same
assert np.allclose(subsol.a, problem[key].solver._problem.a, atol=1e-5)
assert np.allclose(subsol.b, problem[key].solver._problem.b, atol=1e-5)
@pytest.mark.parametrize("method", ["fisher", "perm_test"])
def test_compute_feature_correlation(self, adata_space_rotate: AnnData, method: str):
problem = GWProblem(adata=adata_space_rotate)
problem = problem.prepare(
key="batch",
policy="sequential",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
)
problem = problem.solve(epsilon=0.5)
assert problem["0", "1"].solution.converged
key_added = "test_push"
problem.push(source="0", target="1", data="celltype", subset="A", key_added=key_added)
feature_correlation = problem.compute_feature_correlation(key_added, significance_method=method)
assert isinstance(feature_correlation, pd.DataFrame)
suffix = ["_corr", "_pval", "_qval", "_ci_low", "_ci_high"]
assert list(feature_correlation.columns) == [key_added + suf for suf in suffix]
assert feature_correlation.isna().sum().sum() == 0
@pytest.mark.parametrize("args_to_check", [gw_args_1, gw_args_2])
def test_pass_arguments(self, adata_space_rotate: AnnData, args_to_check: Mapping[str, Any]):
problem = GWProblem(adata=adata_space_rotate)
problem = problem.prepare(
key="batch",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
policy="sequential",
)
_ = args_to_check.pop("alpha", None)
problem = problem.solve(**args_to_check)
key = ("0", "1")
solver = problem[key].solver.solver
args = gw_solver_args if args_to_check["rank"] == -1 else gw_lr_solver_args
for arg, val in args.items():
assert hasattr(solver, val)
if arg == "initializer":
assert isinstance(getattr(solver, val), Callable)
sinkhorn_solver = solver.linear_solver if args_to_check["rank"] == -1 else solver
lin_solver_args = gw_linear_solver_args if args_to_check["rank"] == -1 else gw_lr_linear_solver_args
tmp_dict = args_to_check["linear_solver_kwargs"] if args_to_check["rank"] == -1 else args_to_check
for arg, val in lin_solver_args.items():
el = (
getattr(sinkhorn_solver, val)[0]
if isinstance(getattr(sinkhorn_solver, val), tuple)
else getattr(sinkhorn_solver, val)
)
assert el == tmp_dict[arg], arg
quad_prob = problem[key]._solver._problem
for arg, val in quad_prob_args.items():
assert hasattr(quad_prob, val)
assert getattr(quad_prob, val) == args_to_check[arg]
geom = quad_prob.geom_xx
for arg, val in geometry_args.items():
assert hasattr(geom, val)
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
if arg == "epsilon":
eps_processed = getattr(geom, val)
assert eps_processed == args_to_check[arg], arg
else:
assert getattr(geom, val) == args_to_check[arg], arg
assert el == args_to_check[arg]
@pytest.mark.fast
@pytest.mark.parametrize(
("cost_str", "cost_inst", "cost_kwargs"),
[
("sq_euclidean", SqEuclidean, {}),
("euclidean", Euclidean, {}),
("cosine", Cosine, {}),
("pnorm_p", PNormP, {"p": 3}),
("sq_pnorm", SqPNorm, {"x": {"p": 3}, "y": {"p": 4}}),
],
)
def test_prepare_costs(self, adata_time: AnnData, cost_str: str, cost_inst: Any, cost_kwargs: CostKwargs_t):
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
key="time", policy="sequential", x_attr="X_pca", y_attr="X_pca", cost=cost_str, cost_kwargs=cost_kwargs
)
assert isinstance(problem[0, 1].x.cost, cost_inst)
assert isinstance(problem[0, 1].y.cost, cost_inst)
if cost_kwargs:
x_items = cost_kwargs["x"].items() if "x" in cost_kwargs else cost_kwargs.items()
for k, v in x_items:
assert getattr(problem[0, 1].x.cost, k) == v
y_items = cost_kwargs["y"].items() if "y" in cost_kwargs else cost_kwargs.items()
for k, v in y_items:
assert getattr(problem[0, 1].y.cost, k) == v
problem = problem.solve(max_iterations=2)
@pytest.mark.fast
def test_prepare_marginals(self, adata_time: AnnData, marginal_keys):
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
a=marginal_keys[0], b=marginal_keys[1], key="time", policy="sequential", x_attr="X_pca", y_attr="X_pca"
)
for key in problem:
_assert_marginals_set(adata_time, problem, key, marginal_keys)
@pytest.mark.fast
@pytest.mark.parametrize(
("cost_str", "cost_inst", "cost_kwargs"),
[
("sq_euclidean", SqEuclidean, {}),
("euclidean", Euclidean, {}),
("cosine", Cosine, {}),
("pnorm_p", PNormP, {"p": 3}),
("sq_pnorm", SqPNorm, {"x": {"p": 3}, "y": {"p": 4}}),
],
)
def test_prepare_costs_with_callback(
self, adata_time: AnnData, cost_str: str, cost_inst: Any, cost_kwargs: CostKwargs_t
):
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
key="time",
policy="sequential",
x_callback="local-pca",
y_attr="X_pca",
cost=cost_str,
cost_kwargs=cost_kwargs,
)
assert isinstance(problem[0, 1].x.cost, cost_inst)
assert isinstance(problem[0, 1].y.cost, cost_inst)
if cost_kwargs:
x_items = cost_kwargs["x"].items() if "x" in cost_kwargs else cost_kwargs.items()
for k, v in x_items:
assert getattr(problem[0, 1].x.cost, k) == v
y_items = cost_kwargs["y"].items() if "y" in cost_kwargs else cost_kwargs.items()
for k, v in y_items:
assert getattr(problem[0, 1].y.cost, k) == v
problem = problem.solve(max_iterations=2)
@pytest.mark.parametrize("tag", ["cost_matrix", "kernel"])
def test_set_x(self, adata_time: AnnData, tag: Literal["cost_matrix", "kernel"]):
rng = np.random.RandomState(42)
adata_time = adata_time[adata_time.obs["time"].isin((0, 1))].copy()
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
x_attr="X_pca",
y_attr="X_pca",
key="time",
policy="sequential",
)
adata_0 = adata_time[adata_time.obs["time"] == 0]
cm = rng.uniform(1, 10, size=(adata_0.n_obs, adata_0.n_obs))
cost_matrix = pd.DataFrame(index=adata_0.obs_names, columns=adata_0.obs_names, data=cm)
problem[0, 1].set_x(cost_matrix, tag=tag)
assert isinstance(problem[0, 1].x.data_src, np.ndarray)
assert problem[0, 1].x.data_tgt is None
problem = problem.solve(
max_iterations=5, scale_cost=1
) # TODO(@MUCDK) once fixed in OTT-JAX test for scale_cost
assert isinstance(problem[0, 1].x.data_src, np.ndarray)
assert problem[0, 1].x.data_tgt is None
@pytest.mark.parametrize("tag", ["cost_matrix", "kernel"])
def test_set_y(self, adata_time: AnnData, tag: Literal["cost_matrix", "kernel"]):
rng = np.random.RandomState(42)
adata_time = adata_time[adata_time.obs["time"].isin((0, 1))].copy()
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
x_attr="X_pca",
y_attr="X_pca",
key="time",
policy="sequential",
)
adata_1 = adata_time[adata_time.obs["time"] == 1]
cm = rng.uniform(1, 10, size=(adata_1.n_obs, adata_1.n_obs))
cost_matrix = pd.DataFrame(index=adata_1.obs_names, columns=adata_1.obs_names, data=cm)
problem[0, 1].set_y(cost_matrix, tag=tag)
assert isinstance(problem[0, 1].y.data_src, np.ndarray)
assert problem[0, 1].y.data_tgt is None
problem = problem.solve(
max_iterations=5, scale_cost=1
) # TODO(@MUCDK) once fixed in OTT-JAX test for scale_cost
assert isinstance(problem[0, 1].y.data_src, np.ndarray)
assert problem[0, 1].y.data_tgt is None
@pytest.mark.fast
def test_prepare_different_costs(self, adata_time: AnnData):
problem = GWProblem(adata=adata_time)
problem = problem.prepare(
key="time",
policy="sequential",
x_attr="X_pca",
y_attr="X_pca",
cost={"x": "euclidean", "y": "sq_euclidean"},
)
assert isinstance(problem[0, 1].x.cost, Euclidean)
assert isinstance(problem[0, 1].y.cost, SqEuclidean)
@pytest.mark.parametrize(("memory", "refresh"), [(1, 1), (5, 3), (7, 5)])
@pytest.mark.parametrize("recenter", [True, False])
def test_passing_ott_kwargs_linear(self, adata_space_rotate: AnnData, memory: int, refresh: int, recenter: bool):
problem = GWProblem(adata=adata_space_rotate)
problem = problem.prepare(
key="batch",
policy="sequential",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
)
problem = problem.solve(
max_iterations=1,
linear_solver_kwargs={
"inner_iterations": 1,
"max_iterations": 1,
"anderson": acceleration.AndersonAcceleration(memory=memory, refresh_every=refresh),
"recenter_potentials": recenter,
},
)
sinkhorn_solver = problem[("0", "1")].solver.solver.linear_solver
anderson = sinkhorn_solver.anderson
assert isinstance(anderson, acceleration.AndersonAcceleration)
assert anderson.memory == memory
assert anderson.refresh_every == refresh
recenter_potentials = sinkhorn_solver.recenter_potentials
assert recenter_potentials == recenter
@pytest.mark.parametrize("warm_start", [True, False])
@pytest.mark.parametrize("inner_errors", [True, False])
def test_passing_ott_kwargs_quadratic(self, adata_space_rotate: AnnData, warm_start: bool, inner_errors: bool):
problem = GWProblem(adata=adata_space_rotate)
problem = problem.prepare(
key="batch",
policy="sequential",
x_attr={"attr": "obsm", "key": "spatial"},
y_attr={"attr": "obsm", "key": "spatial"},
)
problem = problem.solve(
max_iterations=1,
warm_start=warm_start,
store_inner_errors=inner_errors,
linear_solver_kwargs={
"inner_iterations": 1,
"max_iterations": 1,
},
)
solver = problem[("0", "1")].solver.solver
assert solver.warm_start == warm_start
assert solver.store_inner_errors == inner_errors