[e72cf6]: / utils.py

Download this file

381 lines (307 with data), 14.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import numpy as np
def train_test_split(adata, test_ratio = 0.1,seed=1):
"""Splits the adata into a training set and a test set.
Args:
adata: the dataset to be splitted.
test_ratio: ratio of the test data in adata.
seed: random seed.
Returns:
the training set and the test set, both in AnnData format.
"""
rng = np.random.default_rng(seed=seed)
test_indices = rng.choice(adata.n_obs, size=int(test_ratio * adata.n_obs), replace=False)
train_indices = list(set(range(adata.n_obs)).difference(test_indices))
train_adata = adata[adata.obs_names[train_indices], :]
test_adata = adata[adata.obs_names[test_indices], :]
return train_adata, test_adata
def calc_weight(
epoch: int,
n_epochs: int,
cutoff_ratio: float = 0.,
warmup_ratio: float = 1 / 3,
min_weight: float = 0.,
max_weight: float = 1e-7
) -> float:
"""Calculates weights.
Args:
epoch: current epoch.
n_epochs: the total number of epochs to train the model.
cutoff_ratio: ratio of cutoff epochs (set weight to zero) and
n_epochs.
warmup_ratio: ratio of warmup epochs and n_epochs.
min_weight: minimum weight.
max_weight: maximum weight.
Returns:
The current weight of the KL term.
"""
fully_warmup_epoch = n_epochs * warmup_ratio
if epoch < n_epochs * cutoff_ratio:
return 0.
if warmup_ratio:
return max(min(1., epoch / fully_warmup_epoch) * max_weight, min_weight)
else:
return max_weight
import math
import os
import shutil
import sys
import time
import torch
import torch.distributions as dist
import torch.nn.functional as F
# Classes
class Constants(object):
eta = 1e-6
eps = 1e-8
log2 = math.log(2)
log2pi = math.log(2 * math.pi)
logceilc = 88 # largest cuda v s.t. exp(v) < inf
logfloorc = -104 # smallest cuda v s.t. exp(v) > 0
# https://stackoverflow.com/questions/14906764/how-to-redirect-stdout-to-both-file-and-console-with-scripting
class Logger(object):
def __init__(self, filename, mode="a"):
self.terminal = sys.stdout
self.log = open(filename, mode)
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
# this flush method is needed for python 3 compatibility.
# this handles the flush command by doing nothing.
# you might want to specify some extra behavior here.
pass
class Timer:
def __init__(self, name):
self.name = name
def __enter__(self):
self.begin = time.time()
return self
def __exit__(self, *args):
self.end = time.time()
self.elapsed = self.end - self.begin
self.elapsedH = time.gmtime(self.elapsed)
print('====> [{}] Time: {:7.3f}s or {}'
.format(self.name,
self.elapsed,
time.strftime("%H:%M:%S", self.elapsedH)))
# Functions
def save_vars(vs, filepath):
"""
Saves variables to the given filepath in a safe manner.
"""
if os.path.exists(filepath):
shutil.copyfile(filepath, '{}.old'.format(filepath))
torch.save(vs, filepath)
def save_model(model, filepath):
"""
To load a saved model, simply use
`model.load_state_dict(torch.load('path-to-saved-model'))`.
"""
save_vars(model.state_dict(), filepath)
# if hasattr(model, 'vaes'):
# for vae in model.vaes:
# fdir, fext = os.path.splitext(filepath)
# save_vars(vae.state_dict(), fdir + '_' + vae.modelName + fext)
def is_multidata(dataB):
return isinstance(dataB, list) or isinstance(dataB, tuple)
def unpack_data(dataB, device='cuda'):
# dataB :: (Tensor, Idx) | [(Tensor, Idx)]
""" Unpacks the data batch object in an appropriate manner to extract data """
if is_multidata(dataB):
if torch.is_tensor(dataB[0]):
if torch.is_tensor(dataB[1]):
return dataB[0].to(device) # mnist, svhn, cubI
elif is_multidata(dataB[1]):
return dataB[0].to(device), dataB[1][0].to(device) # cubISft
else:
raise RuntimeError('Invalid data format {} -- check your dataloader!'.format(type(dataB[1])))
elif is_multidata(dataB[0]):
return [d.to(device) for d in list(zip(*dataB))[0]] # mnist-svhn, cubIS
else:
raise RuntimeError('Invalid data format {} -- check your dataloader!'.format(type(dataB[0])))
elif torch.is_tensor(dataB):
return dataB.to(device)
else:
raise RuntimeError('Invalid data format {} -- check your dataloader!'.format(type(dataB)))
def get_mean(d, K=100):
"""
Extract the `mean` parameter for given distribution.
If attribute not available, estimate from samples.
"""
try:
mean = d.mean
except NotImplementedError:
samples = d.rsample(torch.Size([K]))
mean = samples.mean(0)
return mean
def log_mean_exp(value, dim=0, keepdim=False):
return torch.logsumexp(value, dim, keepdim=keepdim) - math.log(value.size(dim))
def kl_divergence(d1, d2, K=100):
"""Computes closed-form KL if available, else computes a MC estimate."""
if (type(d1), type(d2)) in torch.distributions.kl._KL_REGISTRY:
return torch.distributions.kl_divergence(d1, d2)
else:
samples = d1.rsample(torch.Size([K]))
return (d1.log_prob(samples) - d2.log_prob(samples)).mean(0)
def vade_kld_uni(model, zs):
n_centroids = model.params.n_centroids
gamma, lgamma, mu_c, var_c, pi = model.get_gamma(zs) # pi, var_cは get_gammaでConstants.eta足してる
mu, var = model._qz_x_params
mu_expand = mu.unsqueeze(2).expand(mu.size(0), mu.size(1), n_centroids)
var_expand = var.unsqueeze(2).expand(var.size(0), var.size(1), n_centroids)
lpz_c = -0.5 * torch.sum(gamma * torch.sum(math.log(2 * math.pi) + \
torch.log(var_c) + \
var_expand / var_c + \
(mu_expand - mu_c) ** 2 / var_c, dim=1), dim=1) # log p(z|c)
lpc = torch.sum(gamma * torch.log(pi), dim=1) # log p(c) #log(pi)が-inf怪しい
lqz_x = -0.5 * torch.sum(1 + torch.log(var) + math.log(2 * math.pi), dim=1) # see VaDE paper # log q(z|x)
lqc_x = torch.sum(gamma * (lgamma), dim=1) # log q(c|x)
kld = -lpz_c - lpc + lqz_x + lqc_x
return kld
def vade_kld(model, zs, r):
n_centroids = model.params.n_centroids
gamma, lgamma, mu_c, var_c, pi = model.get_gamma(zs) # pi, var_cは get_gammaでConstants.eta足してる
mu, var = model.vaes[r]._qz_x_params
mu_expand = mu.unsqueeze(2).expand(mu.size(0), mu.size(1), n_centroids)
var_expand = var.unsqueeze(2).expand(var.size(0), var.size(1), n_centroids)
lpz_c = -0.5 * torch.sum(gamma * torch.sum(math.log(2 * math.pi) + \
torch.log(var_c) + \
var_expand / var_c + \
(mu_expand - mu_c) ** 2 / var_c, dim=1), dim=1) # log p(z|c)
lpc = torch.sum(gamma * torch.log(pi), dim=1) # log p(c) #log(pi)が-inf怪しい
lqz_x = -0.5 * torch.sum(1 + torch.log(var) + math.log(2 * math.pi), dim=1) # see VaDE paper # log q(z|x)
lqc_x = torch.sum(gamma * (lgamma), dim=1) # log q(c|x)
kld = -lpz_c - lpc + lqz_x + lqc_x
return kld
def pdist(sample_1, sample_2, eps=1e-5):
"""Compute the matrix of all squared pairwise distances. Code
adapted from the torch-two-sample library (added batching).
You can find the original implementation of this function here:
https://github.com/josipd/torch-two-sample/blob/master/torch_two_sample/util.py
Arguments
---------
sample_1 : torch.Tensor or Variable
The first sample, should be of shape ``(batch_size, n_1, d)``.
sample_2 : torch.Tensor or Variable
The second sample, should be of shape ``(batch_size, n_2, d)``.
norm : float
The l_p norm to be used.
batched : bool
whether data is batched
Returns
-------
torch.Tensor or Variable
Matrix of shape (batch_size, n_1, n_2). The [i, j]-th entry is equal to
``|| sample_1[i, :] - sample_2[j, :] ||_p``."""
if len(sample_1.shape) == 2:
sample_1, sample_2 = sample_1.unsqueeze(0), sample_2.unsqueeze(0)
B, n_1, n_2 = sample_1.size(0), sample_1.size(1), sample_2.size(1)
norms_1 = torch.sum(sample_1 ** 2, dim=-1, keepdim=True)
norms_2 = torch.sum(sample_2 ** 2, dim=-1, keepdim=True)
norms = (norms_1.expand(B, n_1, n_2)
+ norms_2.transpose(1, 2).expand(B, n_1, n_2))
distances_squared = norms - 2 * sample_1.matmul(sample_2.transpose(1, 2))
return torch.sqrt(eps + torch.abs(distances_squared)).squeeze() # batch x K x latent
def NN_lookup(emb_h, emb, data):
indices = pdist(emb.to(emb_h.device), emb_h).argmin(dim=0)
# indices = torch.tensor(cosine_similarity(emb, emb_h.cpu().numpy()).argmax(0)).to(emb_h.device).squeeze()
return data[indices]
class FakeCategorical(dist.Distribution):
support = dist.constraints.real
has_rsample = True
def __init__(self, locs):
self.logits = locs
self._batch_shape = self.logits.shape
@property
def mean(self):
return self.logits
def sample(self, sample_shape=torch.Size()):
with torch.no_grad():
return self.rsample(sample_shape)
def rsample(self, sample_shape=torch.Size()):
return self.logits.expand([*sample_shape, *self.logits.shape]).contiguous()
def log_prob(self, value):
# value of shape (K, B, D)
lpx_z = -F.cross_entropy(input=self.logits.view(-1, self.logits.size(-1)),
target=value.expand(self.logits.size()[:-1]).long().view(-1),
reduction='none',
ignore_index=0)
return lpx_z.view(*self.logits.shape[:-1])
# it is inevitable to have the word embedding dimension summed up in
# cross-entropy loss ($\sum -gt_i \log(p_i)$ with most gt_i = 0, We adopt the
# operationally equivalence here, which is summing up the sentence dimension
# in objective.
# from github Bjarten/early-stopping-pytorch
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, runPath):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, runPath)
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, runPath) # runPath追加
self.counter = 0
def save_checkpoint(self, val_loss, model, runPath):
'''Saves model when validation loss decrease.'''
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
# torch.save(model.state_dict(), 'checkpoint.pt')
save_model(model, runPath + '/model.rar') # mmvaeより移植
self.val_loss_min = val_loss
class EarlyStopping_nosave:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = -1e9
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, runPath):
score = -val_loss
if self.best_score is None:
self.best_score = score
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.counter = 0