|
a |
|
b/dataloader.py |
|
|
1 |
|
|
|
2 |
import numpy as np |
|
|
3 |
import torch |
|
|
4 |
import anndata as ad |
|
|
5 |
import scanpy as sc |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
import gc |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def load_nips_rna_atac_dataset(mod_file_path, gene_encoding): |
|
|
12 |
adata = ad.read_h5ad(mod_file_path) |
|
|
13 |
|
|
|
14 |
feature_gex_index = np.array(adata.var.feature_types) == 'GEX' |
|
|
15 |
feature_adt_index = np.array(adata.var.feature_types) == 'ATAC' |
|
|
16 |
|
|
|
17 |
gex = adata[:, feature_gex_index].copy() |
|
|
18 |
atac = adata[:, feature_adt_index].copy() |
|
|
19 |
del adata |
|
|
20 |
|
|
|
21 |
gc.collect() |
|
|
22 |
|
|
|
23 |
index = [] |
|
|
24 |
for i in range(gex.shape[1]): |
|
|
25 |
if gex.var['gene_id'][i] != gene_encoding['gene_id'][i]: |
|
|
26 |
print('Warning') |
|
|
27 |
else: |
|
|
28 |
A = bool(gene_encoding['is_gene_coding'][i]) |
|
|
29 |
index.append(A) |
|
|
30 |
|
|
|
31 |
gex = gex[:, index].copy() |
|
|
32 |
|
|
|
33 |
# gex.var.to_csv('./gex_name.csv') |
|
|
34 |
# atac.var.to_csv('./atac_name.csv') |
|
|
35 |
|
|
|
36 |
adata_mod1 = gex.copy() |
|
|
37 |
adata_mod1.X = adata_mod1.layers['counts'] |
|
|
38 |
del gex |
|
|
39 |
|
|
|
40 |
adata_mod2 = atac.copy() |
|
|
41 |
adata_mod2.X = adata_mod2.layers['counts'] |
|
|
42 |
del atac |
|
|
43 |
|
|
|
44 |
gc.collect() |
|
|
45 |
|
|
|
46 |
# obs = adata.obs |
|
|
47 |
# adata_mod1 = ad.AnnData(X=adata.layers['counts'][:, feature_gex_index], obs=obs) |
|
|
48 |
# adata_mod2 = ad.AnnData(X=adata.layers['counts'][:, feature_adt_index], obs=obs) |
|
|
49 |
|
|
|
50 |
adata_mod1_original = ad.AnnData.copy(adata_mod1) |
|
|
51 |
adata_mod2_original = ad.AnnData.copy(adata_mod2) |
|
|
52 |
|
|
|
53 |
sc.pp.normalize_total(adata_mod1, target_sum=1e4) |
|
|
54 |
sc.pp.log1p(adata_mod1) |
|
|
55 |
sc.pp.highly_variable_genes(adata_mod1) |
|
|
56 |
index = adata_mod1.var['highly_variable'].values |
|
|
57 |
|
|
|
58 |
adata_mod1 = ad.AnnData.copy(adata_mod1_original) |
|
|
59 |
adata_mod1 = adata_mod1[:, index].copy() |
|
|
60 |
|
|
|
61 |
del adata_mod1_original |
|
|
62 |
gc.collect() |
|
|
63 |
|
|
|
64 |
sc.pp.normalize_total(adata_mod2, target_sum=1e4) |
|
|
65 |
sc.pp.log1p(adata_mod2) |
|
|
66 |
sc.pp.highly_variable_genes(adata_mod2) |
|
|
67 |
index = adata_mod2.var['highly_variable'].values |
|
|
68 |
|
|
|
69 |
adata_mod2 = ad.AnnData.copy(adata_mod2_original) |
|
|
70 |
del adata_mod2_original |
|
|
71 |
gc.collect() |
|
|
72 |
|
|
|
73 |
adata_mod2 = adata_mod2[:, index].copy() |
|
|
74 |
|
|
|
75 |
return adata_mod1, adata_mod2 |
|
|
76 |
|
|
|
77 |
def prepare_nips_dataset(adata_gex, adata_mod2, |
|
|
78 |
batch_col = 'batch', |
|
|
79 |
): |
|
|
80 |
|
|
|
81 |
batch_index = np.array(adata_gex.obs[batch_col].values) |
|
|
82 |
unique_batch = list(np.unique(batch_index)) |
|
|
83 |
batch_index = np.array([unique_batch.index(xs) for xs in batch_index]) |
|
|
84 |
|
|
|
85 |
obs = adata_gex.obs |
|
|
86 |
obs.insert(obs.shape[1], 'batch_indices', batch_index) |
|
|
87 |
adata_gex = ad.AnnData(X=adata_gex.X, obs=obs) |
|
|
88 |
|
|
|
89 |
obs = adata_mod2.obs |
|
|
90 |
obs.insert(obs.shape[1], 'batch_indices', batch_index) |
|
|
91 |
|
|
|
92 |
X = adata_mod2.X |
|
|
93 |
adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
94 |
|
|
|
95 |
Index = np.array(X.sum(1)>0).squeeze() |
|
|
96 |
|
|
|
97 |
adata_gex = adata_gex[Index] |
|
|
98 |
obs = adata_gex.obs |
|
|
99 |
adata_gex = ad.AnnData(X=adata_gex.X, obs=obs) |
|
|
100 |
|
|
|
101 |
adata_mod2 = adata_mod2[Index] |
|
|
102 |
obs = adata_mod2.obs |
|
|
103 |
adata_mod2 = ad.AnnData(X=adata_mod2.X, obs=obs) |
|
|
104 |
|
|
|
105 |
return adata_gex, adata_mod2 |
|
|
106 |
|
|
|
107 |
def data_process_moETM(adata_mod1, adata_mod2): |
|
|
108 |
# train/test on the whole |
|
|
109 |
train_adata_mod1 = adata_mod1 |
|
|
110 |
train_adata_mod2 = adata_mod2 |
|
|
111 |
|
|
|
112 |
######################################################## |
|
|
113 |
# Training dataset |
|
|
114 |
X_mod1 = np.array(train_adata_mod1.X.todense()) |
|
|
115 |
X_mod2 = np.array(train_adata_mod2.X.todense()) |
|
|
116 |
batch_index = np.array(train_adata_mod1.obs['batch_indices']) |
|
|
117 |
|
|
|
118 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
119 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
120 |
|
|
|
121 |
X_mod1_train_T = torch.from_numpy(X_mod1).float() |
|
|
122 |
X_mod2_train_T = torch.from_numpy(X_mod2).float() |
|
|
123 |
batch_index_train_T = torch.from_numpy(batch_index).to(torch.int64) |
|
|
124 |
|
|
|
125 |
del X_mod1, X_mod2, batch_index |
|
|
126 |
|
|
|
127 |
return X_mod1_train_T, X_mod2_train_T, batch_index_train_T, train_adata_mod1 |
|
|
128 |
|
|
|
129 |
def data_process_moETM_split(adata_mod1, adata_mod2, n_sample, test_ratio=0.1): |
|
|
130 |
###### random split for training and testing |
|
|
131 |
from sklearn.utils import resample |
|
|
132 |
Index = np.arange(0, n_sample) |
|
|
133 |
train_index = resample(Index, n_samples=int(n_sample*(1-test_ratio)), replace=False) |
|
|
134 |
test_index = np.array(list(set(range(n_sample)).difference(train_index))) |
|
|
135 |
|
|
|
136 |
train_adata_mod1 = adata_mod1[train_index] |
|
|
137 |
obs = train_adata_mod1.obs |
|
|
138 |
X = train_adata_mod1.X |
|
|
139 |
train_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
140 |
|
|
|
141 |
train_adata_mod2 = adata_mod2[train_index] |
|
|
142 |
obs = train_adata_mod2.obs |
|
|
143 |
X = train_adata_mod2.X |
|
|
144 |
train_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
145 |
|
|
|
146 |
test_adata_mod1 = adata_mod1[test_index] |
|
|
147 |
obs = test_adata_mod1.obs |
|
|
148 |
X = test_adata_mod1.X |
|
|
149 |
test_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
150 |
|
|
|
151 |
test_adata_mod2 = adata_mod2[test_index] |
|
|
152 |
obs = test_adata_mod2.obs |
|
|
153 |
X = test_adata_mod2.X |
|
|
154 |
test_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
155 |
|
|
|
156 |
######################################################## |
|
|
157 |
# Training dataset |
|
|
158 |
X_mod1 = np.array(train_adata_mod1.X.todense()) |
|
|
159 |
X_mod2 = np.array(train_adata_mod2.X.todense()) |
|
|
160 |
batch_index = np.array(train_adata_mod1.obs['batch_indices']) |
|
|
161 |
|
|
|
162 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
163 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
164 |
|
|
|
165 |
X_mod1_train_T = torch.from_numpy(X_mod1).float() |
|
|
166 |
X_mod2_train_T = torch.from_numpy(X_mod2).float() |
|
|
167 |
batch_index_train_T = torch.from_numpy(batch_index).to(torch.int64).cuda() |
|
|
168 |
|
|
|
169 |
# Testing dataset |
|
|
170 |
X_mod1 = np.array(test_adata_mod1.X.todense()) |
|
|
171 |
X_mod2 = np.array(test_adata_mod2.X.todense()) |
|
|
172 |
batch_index = np.array(test_adata_mod1.obs['batch_indices']) |
|
|
173 |
|
|
|
174 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
175 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
176 |
|
|
|
177 |
X_mod1_test_T = torch.from_numpy(X_mod1).float() |
|
|
178 |
X_mod2_test_T = torch.from_numpy(X_mod2).float() |
|
|
179 |
batch_index_test_T = torch.from_numpy(batch_index).to(torch.int64) |
|
|
180 |
|
|
|
181 |
del X_mod1, X_mod2, batch_index |
|
|
182 |
|
|
|
183 |
return X_mod1_train_T, X_mod2_train_T, batch_index_train_T, X_mod1_test_T, X_mod2_test_T, batch_index_test_T, test_adata_mod1 |
|
|
184 |
|
|
|
185 |
def data_process_moETM_leave_one_batch(adata_mod1, adata_mod2, batch_index_as_test): |
|
|
186 |
#leave one batch for testing |
|
|
187 |
train_index = (adata_mod1.obs['batch_indices'] != batch_index_as_test) |
|
|
188 |
test_index = (adata_mod1.obs['batch_indices'] == batch_index_as_test) |
|
|
189 |
|
|
|
190 |
train_adata_mod1 = adata_mod1[train_index] |
|
|
191 |
obs = train_adata_mod1.obs |
|
|
192 |
X = train_adata_mod1.X |
|
|
193 |
train_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
194 |
|
|
|
195 |
train_adata_mod2 = adata_mod2[train_index] |
|
|
196 |
obs = train_adata_mod2.obs |
|
|
197 |
X = train_adata_mod2.X |
|
|
198 |
train_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
199 |
|
|
|
200 |
test_adata_mod1 = adata_mod1[test_index] |
|
|
201 |
obs = test_adata_mod1.obs |
|
|
202 |
X = test_adata_mod1.X |
|
|
203 |
test_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
204 |
|
|
|
205 |
test_adata_mod2 = adata_mod2[test_index] |
|
|
206 |
obs = test_adata_mod2.obs |
|
|
207 |
X = test_adata_mod2.X |
|
|
208 |
test_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
209 |
|
|
|
210 |
######################################################## |
|
|
211 |
# Training dataset |
|
|
212 |
X_mod1 = np.array(train_adata_mod1.X.todense()) |
|
|
213 |
X_mod2 = np.array(train_adata_mod2.X.todense()) |
|
|
214 |
batch_index = np.array(train_adata_mod1.obs['batch_indices']) |
|
|
215 |
|
|
|
216 |
##convert batch index |
|
|
217 |
batch_mapping = {batch: i for i, batch in enumerate(set(batch_index))} |
|
|
218 |
mapped_index = np.array([batch_mapping[batch] for batch in batch_index]) |
|
|
219 |
batch_index = mapped_index |
|
|
220 |
|
|
|
221 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
222 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
223 |
|
|
|
224 |
X_mod1_train_T = torch.from_numpy(X_mod1).float() |
|
|
225 |
X_mod2_train_T = torch.from_numpy(X_mod2).float() |
|
|
226 |
batch_index_train_T = torch.from_numpy(batch_index).to(torch.int64).cuda() |
|
|
227 |
|
|
|
228 |
# Testing dataset |
|
|
229 |
X_mod1 = np.array(test_adata_mod1.X.todense()) |
|
|
230 |
X_mod2 = np.array(test_adata_mod2.X.todense()) |
|
|
231 |
batch_index = np.array(test_adata_mod1.obs['batch_indices']) |
|
|
232 |
|
|
|
233 |
##convert batch index |
|
|
234 |
batch_mapping = {batch: i for i, batch in enumerate(set(batch_index))} |
|
|
235 |
mapped_index = np.array([batch_mapping[batch] for batch in batch_index]) |
|
|
236 |
batch_index = mapped_index |
|
|
237 |
|
|
|
238 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
239 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
240 |
|
|
|
241 |
X_mod1_test_T = torch.from_numpy(X_mod1).float() |
|
|
242 |
X_mod2_test_T = torch.from_numpy(X_mod2).float() |
|
|
243 |
batch_index_test_T = torch.from_numpy(batch_index).to(torch.int64) |
|
|
244 |
|
|
|
245 |
del X_mod1, X_mod2, batch_index |
|
|
246 |
|
|
|
247 |
return X_mod1_train_T, X_mod2_train_T, batch_index_train_T, X_mod1_test_T, X_mod2_test_T, batch_index_test_T, test_adata_mod1, train_adata_mod1 |
|
|
248 |
|
|
|
249 |
|
|
|
250 |
def data_process_moETM_cross_prediction(adata_mod1, adata_mod2, n_sample): |
|
|
251 |
from sklearn.utils import resample |
|
|
252 |
|
|
|
253 |
Index = np.arange(0, n_sample) |
|
|
254 |
train_index = resample(Index, n_samples=n_sample) |
|
|
255 |
test_index = np.array(list(set(range(n_sample)).difference(train_index))) |
|
|
256 |
|
|
|
257 |
train_adata_mod1 = adata_mod1[train_index] |
|
|
258 |
obs = train_adata_mod1.obs |
|
|
259 |
X = train_adata_mod1.X |
|
|
260 |
train_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
261 |
|
|
|
262 |
train_adata_mod2 = adata_mod2[train_index] |
|
|
263 |
obs = train_adata_mod2.obs |
|
|
264 |
X = train_adata_mod2.X |
|
|
265 |
train_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
266 |
|
|
|
267 |
test_adata_mod1 = adata_mod1[test_index] |
|
|
268 |
obs = test_adata_mod1.obs |
|
|
269 |
X = test_adata_mod1.X |
|
|
270 |
test_adata_mod1 = ad.AnnData(X=X, obs=obs) |
|
|
271 |
|
|
|
272 |
test_adata_mod2 = adata_mod2[test_index] |
|
|
273 |
obs = test_adata_mod2.obs |
|
|
274 |
X = test_adata_mod2.X |
|
|
275 |
test_adata_mod2 = ad.AnnData(X=X, obs=obs) |
|
|
276 |
|
|
|
277 |
######################################################## |
|
|
278 |
# Training dataset |
|
|
279 |
X_mod1 = np.array(train_adata_mod1.X.todense()) |
|
|
280 |
X_mod2 = np.array(train_adata_mod2.X.todense()) |
|
|
281 |
batch_index = np.array(train_adata_mod1.obs['batch_indices']) |
|
|
282 |
|
|
|
283 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
284 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
285 |
|
|
|
286 |
X_mod1_train_T = torch.from_numpy(X_mod1).float() |
|
|
287 |
X_mod2_train_T = torch.from_numpy(X_mod2).float() |
|
|
288 |
batch_index_train_T = torch.from_numpy(batch_index).to(torch.int64).cuda() |
|
|
289 |
|
|
|
290 |
# Testing dataset |
|
|
291 |
X_mod1 = np.array(test_adata_mod1.X.todense()) |
|
|
292 |
X_mod2 = np.array(test_adata_mod2.X.todense()) |
|
|
293 |
batch_index = np.array(test_adata_mod1.obs['batch_indices']) |
|
|
294 |
|
|
|
295 |
sum1 = X_mod1.sum(1) |
|
|
296 |
sum2 = X_mod2.sum(1) |
|
|
297 |
|
|
|
298 |
X_mod1 = X_mod1 / X_mod1.sum(1)[:, np.newaxis] |
|
|
299 |
X_mod2 = X_mod2 / X_mod2.sum(1)[:, np.newaxis] |
|
|
300 |
|
|
|
301 |
X_mod1_test_T = torch.from_numpy(X_mod1).float() |
|
|
302 |
X_mod2_test_T = torch.from_numpy(X_mod2).float() |
|
|
303 |
batch_index_test_T = torch.from_numpy(batch_index).to(torch.int64) |
|
|
304 |
|
|
|
305 |
|
|
|
306 |
del X_mod1, X_mod2, batch_index |
|
|
307 |
|
|
|
308 |
return X_mod1_train_T, X_mod2_train_T, batch_index_train_T, X_mod1_test_T, X_mod2_test_T, batch_index_test_T, test_adata_mod1, train_adata_mod1, sum1, sum2 |
|
|
309 |
|
|
|
310 |
|
|
|
311 |
def load_nips_dataset_rna_protein_dataset(mod_file_path, gene_encoding, protein_encoding): |
|
|
312 |
|
|
|
313 |
adata = ad.read_h5ad(mod_file_path) |
|
|
314 |
|
|
|
315 |
feature_gex_index = np.array(adata.var.feature_types) == 'GEX' |
|
|
316 |
feature_adt_index = np.array(adata.var.feature_types) == 'ADT' |
|
|
317 |
|
|
|
318 |
adata_mod1 = adata[:, feature_gex_index].copy() |
|
|
319 |
adata_mod2 = adata[:, feature_adt_index].copy() |
|
|
320 |
|
|
|
321 |
adata_mod1.X = adata_mod1.layers['counts'] |
|
|
322 |
adata_mod2.X = adata_mod2.layers['counts'] |
|
|
323 |
|
|
|
324 |
index = [] |
|
|
325 |
for i in range(adata_mod1.shape[1]): |
|
|
326 |
if adata_mod1.var.index[i] != gene_encoding['X'][i]: |
|
|
327 |
print('Warning') |
|
|
328 |
else: |
|
|
329 |
index.append(bool(gene_encoding['is_gene_coding'][i])) |
|
|
330 |
|
|
|
331 |
adata_mod1_original = adata_mod1[:, index].copy() |
|
|
332 |
adata_mod1 = adata_mod1[:, index].copy() |
|
|
333 |
|
|
|
334 |
sc.pp.normalize_total(adata_mod1, target_sum=1e4) |
|
|
335 |
sc.pp.log1p(adata_mod1) |
|
|
336 |
sc.pp.highly_variable_genes(adata_mod1) # n_top_genes |
|
|
337 |
index = adata_mod1.var['highly_variable'].values |
|
|
338 |
|
|
|
339 |
adata_mod1_original = adata_mod1_original[:, index].copy() |
|
|
340 |
|
|
|
341 |
index = [] |
|
|
342 |
for i in range(adata_mod2.shape[1]): |
|
|
343 |
if adata_mod2.var.index[i] != protein_encoding['X'][i]: |
|
|
344 |
print('Warning') |
|
|
345 |
else: |
|
|
346 |
index.append(bool(protein_encoding['is_protein_coding'][i])) |
|
|
347 |
|
|
|
348 |
adata_mod2 = adata_mod2[:, index].copy() |
|
|
349 |
|
|
|
350 |
return adata_mod1_original, adata_mod2 |
|
|
351 |
|
|
|
352 |
def load_nips_rna_atac_dataset_with_pathway(mod_file_path, gene_encoding, gene_pathway): |
|
|
353 |
adata = ad.read_h5ad(mod_file_path) |
|
|
354 |
|
|
|
355 |
feature_gex_index = np.array(adata.var.feature_types) == 'GEX' |
|
|
356 |
feature_adt_index = np.array(adata.var.feature_types) == 'ATAC' |
|
|
357 |
|
|
|
358 |
gex = adata[:, feature_gex_index].copy() |
|
|
359 |
atac = adata[:, feature_adt_index].copy() |
|
|
360 |
del adata |
|
|
361 |
|
|
|
362 |
gc.collect() |
|
|
363 |
|
|
|
364 |
gene_pathway_sum = gene_pathway.sum(0) |
|
|
365 |
index = [] |
|
|
366 |
for i in range(gex.shape[1]): |
|
|
367 |
if gex.var['gene_id'][i] != gene_encoding['gene_id'][i]: |
|
|
368 |
print('Warning') |
|
|
369 |
else: |
|
|
370 |
A = bool(gene_encoding['is_gene_coding'][i]) |
|
|
371 |
B = bool(gene_pathway_sum[i]) |
|
|
372 |
index.append(A & B) |
|
|
373 |
|
|
|
374 |
gex = gex[:, index].copy() |
|
|
375 |
gene_pathway = gene_pathway[:, index].copy() |
|
|
376 |
|
|
|
377 |
adata_mod1 = gex.copy() |
|
|
378 |
adata_mod1.X = adata_mod1.layers['counts'] |
|
|
379 |
del gex |
|
|
380 |
|
|
|
381 |
adata_mod2 = atac.copy() |
|
|
382 |
adata_mod2.X = adata_mod2.layers['counts'] |
|
|
383 |
del atac |
|
|
384 |
|
|
|
385 |
gc.collect() |
|
|
386 |
|
|
|
387 |
adata_mod1_original = ad.AnnData.copy(adata_mod1) |
|
|
388 |
adata_mod2_original = ad.AnnData.copy(adata_mod2) |
|
|
389 |
|
|
|
390 |
sc.pp.normalize_total(adata_mod1, target_sum=1e4) |
|
|
391 |
sc.pp.log1p(adata_mod1) |
|
|
392 |
sc.pp.highly_variable_genes(adata_mod1) |
|
|
393 |
index = adata_mod1.var['highly_variable'].values |
|
|
394 |
|
|
|
395 |
adata_mod1 = ad.AnnData.copy(adata_mod1_original) |
|
|
396 |
adata_mod1 = adata_mod1[:, index].copy() |
|
|
397 |
gene_pathway = gene_pathway[:, index].copy() |
|
|
398 |
|
|
|
399 |
del adata_mod1_original |
|
|
400 |
gc.collect() |
|
|
401 |
|
|
|
402 |
sc.pp.normalize_total(adata_mod2, target_sum=1e4) |
|
|
403 |
sc.pp.log1p(adata_mod2) |
|
|
404 |
sc.pp.highly_variable_genes(adata_mod2) |
|
|
405 |
index = adata_mod2.var['highly_variable'].values |
|
|
406 |
|
|
|
407 |
adata_mod2 = ad.AnnData.copy(adata_mod2_original) |
|
|
408 |
del adata_mod2_original |
|
|
409 |
gc.collect() |
|
|
410 |
|
|
|
411 |
adata_mod2 = adata_mod2[:, index].copy() |
|
|
412 |
|
|
|
413 |
return adata_mod1, adata_mod2, gene_pathway |