347 lines (346 with data), 87.5 kB
ÇĽ îdocutils.nodesöîdocumentöôö)üö}ö(î rawsourceöî öîchildrenö]öh îsectionöôö)üö}ö(hhh]ö(h îtitleöôö)üö}ö(hîThe Maui Classöh]öh îTextöôöîThe Maui Classöůöüö}ö(hhîparentöhhhîsourceöNîlineöNubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öuîtagnameöhhhhhhî*/home/jona/work/phd/maui/maui/doc/maui.rstöhKubîsphinx.addnodesöîindexöôö)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(îsingleöîMaui (class in maui)öî maui.MauiöhNtöauh)h,hhhhhNhNubh+îdescöôö)üö}ö(hhh]ö(h+îdesc_signatureöôö)üö}ö(hXM Maui(n_hidden=[1500], n_latent=80, batch_size=100, epochs=400, architecture='stacked', initial_beta_val=0, kappa=1.0, max_beta_val=1, learning_rate=0.0005, epsilon_std=1.0, batch_normalize_inputs=True, batch_normalize_intermediaries=True, batch_normalize_embedding=True, relu_intermediaries=True, relu_embedding=True, input_dim=None)öh]ö(h+îdesc_annotationöôö)üö}ö(hîclass öh]öhîclass öůöüö}ö(hhhhJhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öî xml:spaceöîpreserveöuh)hHhhDhhhîB/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.MauiöhNubh+îdesc_addnameöôö)üö}ö(hîmaui.öh]öhîmaui.öůöüö}ö(hhhh]hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h[hhDhhhhZhNubh+î desc_nameöôö)üö}ö(hîMauiöh]öhîMauiöůöüö}ö(hhhhmhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhhDhhhhZhNubh+îdesc_parameterlistöôö)üö}ö(hXG n_hidden=[1500], n_latent=80, batch_size=100, epochs=400, architecture='stacked', initial_beta_val=0, kappa=1.0, max_beta_val=1, learning_rate=0.0005, epsilon_std=1.0, batch_normalize_inputs=True, batch_normalize_intermediaries=True, batch_normalize_embedding=True, relu_intermediaries=True, relu_embedding=True, input_dim=Noneöh]öh+îdesc_parameteröôö)üö}ö(hXG n_hidden=[1500], n_latent=80, batch_size=100, epochs=400, architecture='stacked', initial_beta_val=0, kappa=1.0, max_beta_val=1, learning_rate=0.0005, epsilon_std=1.0, batch_normalize_inputs=True, batch_normalize_intermediaries=True, batch_normalize_embedding=True, relu_intermediaries=True, relu_embedding=True, input_dim=Noneöh]öhXG n_hidden=[1500], n_latent=80, batch_size=100, epochs=400, architecture='stacked', initial_beta_val=0, kappa=1.0, max_beta_val=1, learning_rate=0.0005, epsilon_std=1.0, batch_normalize_inputs=True, batch_normalize_intermediaries=True, batch_normalize_embedding=True, relu_intermediaries=True, relu_embedding=True, input_dim=Noneöůöüö}ö(hhhhâhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühh}hhhhZhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hhDhhhhZhNubh+îonlyöôö)üö}ö(hhh]öh+îpending_xreföôö)üö}ö(hhh]öh îinlineöôö)üö}ö(hhh]öhî[source]öůöüö}ö(hhhhúubah}ö(h]öh!]öî
viewcode-linköah#]öh%]öh']öuh)híhh×ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîviewcodeöî refdomainöîstdöîrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöhoîrefdocöîmauiöuh)hťhhÖubah}ö(h]öh!]öh#]öh%]öh']öîexpröîhtmlöuh)hŚhhDhhhNhNubeh}ö(h]öh;ah!]öh#]öh;ah%]öh']öîfirstöëîmoduleöîmauiöîclassöhîfullnameöhouh)hBhh?hhhhZhNubh+îdesc_contentöôö)üö}ö(hhh]ö(h î paragraphöôö)üö}ö(hî1Maui (Multi-omics Autoencoder Integration) model.öh]öhî1Maui (Multi-omics Autoencoder Integration) model.öůöüö}ö(hhŢhh█hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîB/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.MauiöhKhhÍhhubh┌)üö}ö(hîLTrains a variational autoencoder to find latent factors in multi-modal data.öh]öhîLTrains a variational autoencoder to find latent factors in multi-modal data.öůöüö}ö(hhýhhŕhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhKhhÍhhubh îdefinition_listöôö)üö}ö(hhh]ö(h îdefinition_list_itemöôö)üö}ö(hî┴n_hidden: array (default [1500])
The sizes of the hidden layers of the autoencoder architecture.
Each element of the array specifies the number of nodes in successive
layers of the autoencoder
öh]ö(h îtermöôö)üö}ö(hî n_hidden: array (default [1500])öh]öhî n_hidden: array (default [1500])öůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhÚhK
hh ubh î
definitionöôö)üö}ö(hhh]öh┌)üö}ö(hîčThe sizes of the hidden layers of the autoencoder architecture.
Each element of the array specifies the number of nodes in successive
layers of the autoencoderöh]öhîčThe sizes of the hidden layers of the autoencoder architecture.
Each element of the array specifies the number of nodes in successive
layers of the autoencoderöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hh ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhhÚhK
hh˙ubh■)üö}ö(hîTn_latent: int (default 80)
The size of the latent layer (number of latent features)
öh]ö(j )üö}ö(hîn_latent: int (default 80)öh]öhîn_latent: int (default 80)öůöüö}ö(hj8 hj6 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhÚhK
hj2 ubj )üö}ö(hhh]öh┌)üö}ö(hî8The size of the latent layer (number of latent features)öh]öhî8The size of the latent layer (number of latent features)öůöüö}ö(hjI hjG ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhK
hjD ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj2 ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhhÚhK
hh˙hhubh■)üö}ö(hîYbatch_size: int (default 100)
The size of the mini-batches used for training the network
öh]ö(j )üö}ö(hîbatch_size: int (default 100)öh]öhîbatch_size: int (default 100)öůöüö}ö(hjg hje ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhÚhKhja ubj )üö}ö(hhh]öh┌)üö}ö(hî:The size of the mini-batches used for training the networköh]öhî:The size of the mini-batches used for training the networköůöüö}ö(hjx hjv ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhKhjs ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hja ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhhÚhKhh˙hhubh■)üö}ö(hîPepochs: int (default 400)
The number of epoches to use for training the network
öh]ö(j )üö}ö(hîepochs: int (default 400)öh]öhîepochs: int (default 400)öůöüö}ö(hjľ hjö ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhÚhKhjÉ ubj )üö}ö(hhh]öh┌)üö}ö(hî5The number of epoches to use for training the networköh]öhî5The number of epoches to use for training the networköůöüö}ö(hjž hją ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhKhjó ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjÉ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhhÚhKhh˙hhubh■)üö}ö(hX architecture:
One of 'stacked' or 'deep'. If 'stacked', will use a stacked VAE model, where
the intermediate layers are also variational. If 'deep', will train a deep VAE
where the intermediate layers are regular (ReLU) units, and only the middle
(latent) layer is variational.
öh]ö(j )üö}ö(hî
architecture:öh]öhî
architecture:öůöüö}ö(hj┼ hj├ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhÚhKhj┐ ubj )üö}ö(hhh]öh┌)üö}ö(hX One of 'stacked' or 'deep'. If 'stacked', will use a stacked VAE model, where
the intermediate layers are also variational. If 'deep', will train a deep VAE
where the intermediate layers are regular (ReLU) units, and only the middle
(latent) layer is variational.öh]öhX One of ÔÇśstackedÔÇÖ or ÔÇśdeepÔÇÖ. If ÔÇśstackedÔÇÖ, will use a stacked VAE model, where
the intermediate layers are also variational. If ÔÇśdeepÔÇÖ, will train a deep VAE
where the intermediate layers are regular (ReLU) units, and only the middle
(latent) layer is variational.öůöüö}ö(hjÍ hjď ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hhÚhKhjĐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj┐ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhhÚhKhh˙hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hhÍhhhhÚhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îc_index() (maui.Maui method)öîmaui.Maui.c_indexöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî┼Maui.c_index(survival, clinical_only=True, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5, sel_clin_alpha=0.05, sel_clin_penalty=0)öh]ö(hl)üö}ö(hîc_indexöh]öhîc_indexöůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj hhhîJ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.c_indexöhNubh|)üö}ö(hîĚsurvival, clinical_only=True, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5, sel_clin_alpha=0.05, sel_clin_penalty=0öh]öhé)üö}ö(hîĚsurvival, clinical_only=True, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5, sel_clin_alpha=0.05, sel_clin_penalty=0öh]öhîĚsurvival, clinical_only=True, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5, sel_clin_alpha=0.05, sel_clin_penalty=0öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj hhhj hNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj hhhj hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj6 ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj3 ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.c_indexöîrefdocöh└uh)hťhj0 ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh¤ëhđîmauiöhĎhohËjO uh)hBhj hhhj hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîsCompute's Harrell's c-Index for a Cox Proportional Hazards regression modeling
survival by the latent factors in z.öh]öhîwComputeÔÇÖs HarrellÔÇÖs c-Index for a Cox Proportional Hazards regression modeling
survival by the latent factors in z.öůöüö}ö(hjd hjb hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîJ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.c_indexöhKhj_ hhubh┌)üö}ö(hîĆz: pd.DataFrame (n_samples, n_latent factors)
survival: pd.DataFrame of survival information and relevant covariatesöh]öhîĆz: pd.DataFrame (n_samples, n_latent factors)
survival: pd.DataFrame of survival information and relevant covariatesöůöüö}ö(hjs hjq hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhj_ hhubh îblock_quoteöôö)üö}ö(hhh]öh┌)üö}ö(hî/(such as sex, age at diagnosis, or tumor stage)öh]öhî/(such as sex, age at diagnosis, or tumor stage)öůöüö}ö(hjć hjä ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhjü ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj_ hhhjp hNubh¨)üö}ö(hhh]ö(h■)üö}ö(hîĽclinical_only: Compute the c-Index for a model containing only
individually clinically relevant latent factors
(see ``select_clinical_factors``)öh]ö(j )üö}ö(hîCclinical_only: Compute the c-Index for a model containing onlyöh]öhîCclinical_only: Compute the c-Index for a model containing onlyöůöüö}ö(hjí hjč ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjp hK
hjŤ ubj )üö}ö(hhh]öh┌)üö}ö(hîQindividually clinically relevant latent factors
(see ``select_clinical_factors``)öh]ö(hî5individually clinically relevant latent factors
(see öůöüö}ö(hî5individually clinically relevant latent factors
(see öhj░ ubh îliteralöôö)üö}ö(hî``select_clinical_factors``öh]öhîselect_clinical_factorsöůöüö}ö(hhhj╗ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj░ ubhî)öůöüö}ö(hî)öhj░ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hK
hjş ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjŤ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjp hK
hjś ubh■)üö}ö(hîćduration_column: the name of the column in ``survival`` containing the
duration (time between diagnosis and death or last followup)öh]ö(j )üö}ö(hîIduration_column: the name of the column in ``survival`` containing theöh]ö(hî.duration_column: the name of the column in öůöüö}ö(hî.duration_column: the name of the column in öhjń ubj║ )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjÝ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjń ubhî containing theöůöüö}ö(hî containing theöhjń ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hjp hKhjÓ ubj )üö}ö(hhh]öh┌)üö}ö(hî<duration (time between diagnosis and death or last followup)öh]öhî<duration (time between diagnosis and death or last followup)öůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hK
hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjÓ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjp hKhjś hhubh■)üö}ö(hîoobserved_column: the name of the column in ``survival`` containing
indicating whether time of death is knownöh]ö(j )üö}ö(hîEobserved_column: the name of the column in ``survival`` containingöh]ö(hî.observed_column: the name of the column in öůöüö}ö(hî.observed_column: the name of the column in öhj' ubj║ )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj0 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj' ubhî containingöůöüö}ö(hî containingöhj' ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hjp hKhj# ubj )üö}ö(hhh]öh┌)üö}ö(hî)indicating whether time of death is knownöh]öhî)indicating whether time of death is knownöůöüö}ö(hjN hjL ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhjI ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj# ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjp hKhjś hhubh■)üö}ö(hî¬cox_penalties: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)
to try. Returns the best c given by the different penalties
(by cross-validation)öh]ö(j )üö}ö(hîXcox_penalties: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)öh]ö(hî>cox_penalties: penalty coefficient in Cox PH solver (see öůöüö}ö(hî>cox_penalties: penalty coefficient in Cox PH solver (see öhjj ubj║ )üö}ö(hî``lifelines.CoxPHFitter``öh]öhîlifelines.CoxPHFitteröůöüö}ö(hhhjs ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjj ubhî)öůöüö}ö(hj═ hjj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hjp hKhjf ubj )üö}ö(hhh]öh┌)üö}ö(hîQto try. Returns the best c given by the different penalties
(by cross-validation)öh]öhîQto try. Returns the best c given by the different penalties
(by cross-validation)öůöüö}ö(hjÉ hjÄ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhjő ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjf ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjp hKhjś hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hj_ hhhjp hNubh┌)üö}ö(hîĐcv_folds: number of cross-validation folds to compute C
sel_clin_penalty: CPH penalizer to use when selecting clinical factors
sel_clin_alpha: significance level when selecting clinical factorsöh]öhîĐcv_folds: number of cross-validation folds to compute C
sel_clin_penalty: CPH penalizer to use when selecting clinical factors
sel_clin_alpha: significance level when selecting clinical factorsöůöüö}ö(hj░ hj« hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhj_ hhubh¨)üö}ö(hhh]öh■)üö}ö(hîhcs: array, Harrell's c-Index, an auc-like metric for survival prediction accuracy.
one value per cv_foldöh]ö(j )üö}ö(hîRcs: array, Harrell's c-Index, an auc-like metric for survival prediction accuracy.öh]öhîTcs: array, HarrellÔÇÖs c-Index, an auc-like metric for survival prediction accuracy.öůöüö}ö(hj┼ hj├ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjp hKhj┐ ubj )üö}ö(hhh]öh┌)üö}ö(hîone value per cv_foldöh]öhîone value per cv_foldöůöüö}ö(hjÍ hjď ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjp hKhjĐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj┐ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjp hKhj╝ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj_ hhhjp hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj hhhj hNubeh}ö(h]öh!]öh#]öh%]öh']öîdomainöîpyöîobjtypeöîmethodöîdesctypeöj înoindexöëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îcluster() (maui.Maui method)öîmaui.Maui.clusteröhNtöauh)h,hhÍhhhîJ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.clusteröhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîâMaui.cluster(k=None, optimal_k_method='ami', optimal_k_range=range(3, 10), ami_y=None, kmeans_kwargs={'n_init': 1000, 'n_jobs': 2})öh]ö(hl)üö}ö(hîclusteröh]öhîclusteröůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj hhhîJ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.clusteröhNubh|)üö}ö(hîuk=None, optimal_k_method='ami', optimal_k_range=range(3, 10), ami_y=None, kmeans_kwargs={'n_init': 1000, 'n_jobs': 2}öh]ö(hé)üö}ö(hîk=Noneöh]öhîk=Noneöůöüö}ö(hhhj/ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hîoptimal_k_method='ami'öh]öhîoptimal_k_method='ami'öůöüö}ö(hhhj= ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hîoptimal_k_range=range(3öh]öhîoptimal_k_range=range(3öůöüö}ö(hhhjK ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hî10)öh]öhî10)öůöüö}ö(hhhjY ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hî
ami_y=Noneöh]öhî
ami_y=Noneöůöüö}ö(hhhjg ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hîkmeans_kwargs={'n_init': 1000öh]öhîkmeans_kwargs={'n_init': 1000öůöüö}ö(hhhju ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubhé)üö}ö(hî'n_jobs': 2}öh]öhî'n_jobs': 2}öůöüö}ö(hhhjâ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj+ ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj hhhj* hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjŁ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhjÜ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.clusteröîrefdocöh└uh)hťhjŚ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh¤ëhđîmauiöhĎhohËj uh)hBhj hhhj* hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hî>Cluster the samples using k-means based on the latent factors.öh]öhî>Cluster the samples using k-means based on the latent factors.öůöüö}ö(hj╦ hj╔ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjĂ hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîkk: optional, the number of clusters to find.
if not given, will attempt to find optimal k.öh]ö(j )üö}ö(hî=k: optional, the number of clusters to find.öh]öhî=k: optional, the number of clusters to find.öůöüö}ö(hjÓ hjŮ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj hKhj┌ ubj )üö}ö(hhh]öh┌)üö}ö(hî-if not given, will attempt to find optimal k.öh]öhî-if not given, will attempt to find optimal k.öůöüö}ö(hj˝ hj´ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjý ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj┌ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj hKhjÎ ubh■)üö}ö(hXZ optimal_k_method: supported methods are 'ami' and 'silhouette'. Otherwise, callable.
if 'ami', will pick K which gives the best AMI
(adjusted mutual information) with external labels.
if 'silhouette' will pick the K which gives the best
mean silhouette coefficient.
if callable, should have signature ``scorer(yhat)``
and return a scalar score.öh]ö(j )üö}ö(hîVoptimal_k_method: supported methods are 'ami' and 'silhouette'. Otherwise, callable.öh]öhî^optimal_k_method: supported methods are ÔÇśamiÔÇÖ and ÔÇśsilhouetteÔÇÖ. Otherwise, callable.öůöüö}ö(hj hj
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj hKhj ubj )üö}ö(hhh]öh┌)üö}ö(hX if 'ami', will pick K which gives the best AMI
(adjusted mutual information) with external labels.
if 'silhouette' will pick the K which gives the best
mean silhouette coefficient.
if callable, should have signature ``scorer(yhat)``
and return a scalar score.öh]ö(hîÓif ÔÇśamiÔÇÖ, will pick K which gives the best AMI
(adjusted mutual information) with external labels.
if ÔÇśsilhouetteÔÇÖ will pick the K which gives the best
mean silhouette coefficient.
if callable, should have signature öůöüö}ö(hîěif 'ami', will pick K which gives the best AMI
(adjusted mutual information) with external labels.
if 'silhouette' will pick the K which gives the best
mean silhouette coefficient.
if callable, should have signature öhj ubj║ )üö}ö(hî``scorer(yhat)``öh]öhîscorer(yhat)öůöüö}ö(hhhj' ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj ubhî
and return a scalar score.öůöüö}ö(hî
and return a scalar score.öhj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj hKhjÎ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hjĂ hhhj hNubh┌)üö}ö(hîĽoptimal_k_range: array-like, range of Ks to try to find optimal K among
ami_y: array-like (n_samples), the ground-truth labels to useöh]öhîĽoptimal_k_range: array-like, range of Ks to try to find optimal K among
ami_y: array-like (n_samples), the ground-truth labels to useöůöüö}ö(hjT hjR hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjĂ hhubjÇ )üö}ö(hhh]öh┌)üö}ö(hî9when picking K by "best AMI against ground-truth" method.öh]öhî=when picking K by ÔÇťbest AMI against ground-truthÔÇŁ method.öůöüö}ö(hje hjc ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhj` ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjĂ hhhj hNubh┌)üö}ö(hîQkmeans_kwargs: optional, kwargs for initialization of sklearn.cluster.KMeansöh]öhîQkmeans_kwargs: optional, kwargs for initialization of sklearn.cluster.KMeansöůöüö}ö(hjy hjw hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjĂ hhubh┌)üö}ö(hî9yhat: Series (n_samples) cluster labels for each sampleöh]öhî9yhat: Series (n_samples) cluster labels for each sampleöůöüö}ö(hjç hjů hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjĂ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj hhhj* hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj já j ëuh)h=hhhhÍhj hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î compute_auc() (maui.Maui method)öîmaui.Maui.compute_aucöhNtöauh)h,hhÍhhhîN/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.compute_aucöhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîMaui.compute_auc(y, **kwargs)öh]ö(hl)üö}ö(hîcompute_aucöh]öhîcompute_aucöůöüö}ö(hhhjĚ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj│ hhhîN/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.compute_aucöhNubh|)üö}ö(hîy, **kwargsöh]ö(hé)üö}ö(hîyöh]öhîyöůöüö}ö(hhhj╩ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjĂ ubhé)üö}ö(hî**kwargsöh]öhî**kwargsöůöüö}ö(hhhjě ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjĂ ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj│ hhhj┼ hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj˛ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj´ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.compute_aucöîrefdocöh└uh)hťhjý ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj│ hhhNhNubeh}ö(h]öjş ah!]öh#]öjş ah%]öh']öh¤ëhđîmauiöhĎhohËj uh)hBhj░ hhhj┼ hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hînCompute area under the ROC curve for predicting the labels in y using the
latent features previously inferred.öh]öhînCompute area under the ROC curve for predicting the labels in y using the
latent features previously inferred.öůöüö}ö(hj hj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj» hKhj hhubh┌)üö}ö(hîGy: labels to predict
**kwargs: arguments for ``compute_roc``öh]ö(hîy: labels to predict
öůöüö}ö(hîy: labels to predict
öhj, hhhNhNubh îproblematicöôö)üö}ö(hî**öh]öhî**öůöüö}ö(hhhj7 ubah}ö(h]öîid2öah!]öh#]öh%]öh']öîrefidöîid1öuh)j5 hj, ubhîkwargs: arguments for öůöüö}ö(hîkwargs: arguments for öhj, hhhNhNubj║ )üö}ö(hî``compute_roc``öh]öhîcompute_rocöůöüö}ö(hhhjM ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj, ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj» hKhj hhubh┌)üö}ö(hî0aucs: pd.Series, auc per class as well as meanöh]öhî0aucs: pd.Series, auc per class as well as meanöůöüö}ö(hjc hja hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj» hKhj hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj░ hhhj┼ hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j| j ëuh)h=hhhhÍhj» hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î compute_roc() (maui.Maui method)öîmaui.Maui.compute_rocöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîMaui.compute_roc(y, **kwargs)öh]ö(hl)üö}ö(hîcompute_rocöh]öhîcompute_rocöůöüö}ö(hhhjĺ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhjÄ hhhîN/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.compute_rocöhNubh|)üö}ö(hîy, **kwargsöh]ö(hé)üö}ö(hj╠ h]öhîyöůöüö}ö(hhhją ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjí ubhé)üö}ö(hî**kwargsöh]öhî**kwargsöůöüö}ö(hhhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjí ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hjÄ hhhjá hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj╠ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj╔ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.compute_rocöîrefdocöh└uh)hťhjĂ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhjÄ hhhNhNubeh}ö(h]öjë ah!]öh#]öjë ah%]öh']öh¤ëhđîmauiöhĎhohËjň uh)hBhjő hhhjá hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hXś Compute Receiver Operating Characteristics curve for SVM prediction
of labels ``y`` from the latent factors. Computes both the ROC curves
(true positive rate, true negative rate), and the area under the roc (auc).
ROC and auROC computed for each class (the classes are inferred from ``y``),
as well as a "mean" ROC, computed by averaging the class ROCs. Only samples
in the index of ``y`` will be considered.öh]ö(hîNCompute Receiver Operating Characteristics curve for SVM prediction
of labels öůöüö}ö(hîNCompute Receiver Operating Characteristics curve for SVM prediction
of labels öhj° hhhNhNubj║ )üö}ö(hî``y``öh]öhîyöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj° ubhî╚ from the latent factors. Computes both the ROC curves
(true positive rate, true negative rate), and the area under the roc (auc).
ROC and auROC computed for each class (the classes are inferred from öůöüö}ö(hî╚ from the latent factors. Computes both the ROC curves
(true positive rate, true negative rate), and the area under the roc (auc).
ROC and auROC computed for each class (the classes are inferred from öhj° hhhNhNubj║ )üö}ö(hî``y``öh]öhîyöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj° ubhîc),
as well as a ÔÇťmeanÔÇŁ ROC, computed by averaging the class ROCs. Only samples
in the index of öůöüö}ö(hî_),
as well as a "mean" ROC, computed by averaging the class ROCs. Only samples
in the index of öhj° hhhNhNubj║ )üö}ö(hî``y``öh]öhîyöůöüö}ö(hhhj' ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj° ubhî will be considered.öůöüö}ö(hî will be considered.öhj° hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîN/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.compute_rocöhKhj§ hhubh┌)üö}ö(hîyy: array-like (n_samples,), the labels of the samples to predict
**kwargs: arguments for ``utils.compute_roc``öh]ö(hîJy: array-like (n_samples,), the labels of the samples to predict
öůöüö}ö(hîJy: array-like (n_samples,), the labels of the samples to predict
öhjA hhhNhNubj6 )üö}ö(hî**öh]öhî**öůöüö}ö(hhhjJ ubah}ö(h]öîid4öah!]öh#]öh%]öh']öîrefidöîid3öuh)j5 hjA ubhîkwargs: arguments for öůöüö}ö(hîkwargs: arguments for öhjA hhhNhNubj║ )üö}ö(hî``utils.compute_roc``öh]öhîutils.compute_rocöůöüö}ö(hhhj` ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjA ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj@ hK
hj§ hhubh¨)üö}ö(hhh]öh■)üö}ö(hîŻroc_curves: dict, one key per class as well as "mean", each value is a dataframe
containing the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öh]ö(j )üö}ö(hîProc_curves: dict, one key per class as well as "mean", each value is a dataframeöh]öhîTroc_curves: dict, one key per class as well as ÔÇťmeanÔÇŁ, each value is a dataframeöůöüö}ö(hj} hj{ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj@ hKhjw ubj )üö}ö(hhh]öh┌)üö}ö(hîlcontaining the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öh]öhîlcontaining the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öůöüö}ö(hjÄ hjî ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj@ hKhjë ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjw ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj@ hKhjt ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj§ hhhj@ hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhjő hhhjá hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j╣ j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î/drop_unexplanatory_factors() (maui.Maui method)öî$maui.Maui.drop_unexplanatory_factorsöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî/Maui.drop_unexplanatory_factors(threshold=0.02)öh]ö(hl)üö}ö(hîdrop_unexplanatory_factorsöh]öhîdrop_unexplanatory_factorsöůöüö}ö(hhhj¤ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj╦ hhhî]/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.drop_unexplanatory_factorsöhNubh|)üö}ö(hîthreshold=0.02öh]öhé)üö}ö(hîthreshold=0.02öh]öhîthreshold=0.02öůöüö}ö(hhhjÔ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjŮ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj╦ hhhjŢ hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjŘ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj¨ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.drop_unexplanatory_factorsöîrefdocöh└uh)hťhj÷ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj╦ hhhNhNubeh}ö(h]öjĂ ah!]öh#]öjĂ ah%]öh']öh¤ëhđîmauiöhĎhohËj uh)hBhj╚ hhhjŢ hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîŐDrops factors which have a low R^2 score in a univariate linear model
predicting the features `x` from a column of the latent factors `z`.öh]ö(hî^Drops factors which have a low R^2 score in a univariate linear model
predicting the features öůöüö}ö(hî^Drops factors which have a low R^2 score in a univariate linear model
predicting the features öhj( hhhNhNubh îtitle_referenceöôö)üö}ö(hî`x`öh]öhîxöůöüö}ö(hhhj3 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj( ubhî% from a column of the latent factors öůöüö}ö(hî% from a column of the latent factors öhj( hhhNhNubj2 )üö}ö(hî`z`öh]öhîzöůöüö}ö(hhhjF ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj( ubhî.öůöüö}ö(hî.öhj( hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hî]/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.drop_unexplanatory_factorsöhKhj% hhubh¨)üö}ö(hhh]öh■)üö}ö(hîPthreshold: threshold for R^2, latent factors below this threshold
are dropped.
öh]ö(j )üö}ö(hîBthreshold: threshold for R^2, latent factors below this thresholdöh]öhîBthreshold: threshold for R^2, latent factors below this thresholdöůöüö}ö(hji hjg ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj_ hKhjc ubj )üö}ö(hhh]öh┌)üö}ö(hîare dropped.öh]öhîare dropped.öůöüö}ö(hjz hjx ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj_ hKhju ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjc ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj_ hKhj` ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj% hhhj_ hNubh¨)üö}ö(hhh]öh■)üö}ö(hî█z_filt: (n_samples, n_factors) DataFrame of latent factor values,
with only those columns from the input `z` which have an R^2
above the threshold when using that column as an input
to a linear model predicting `x`.öh]ö(j )üö}ö(hîEz_filt: (n_samples, n_factors) DataFrame of latent factor values,öh]öhîEz_filt: (n_samples, n_factors) DataFrame of latent factor values,öůöüö}ö(hjí hjč ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj_ hK
hjŤ ubj )üö}ö(hhh]öh┌)üö}ö(hîĽwith only those columns from the input `z` which have an R^2
above the threshold when using that column as an input
to a linear model predicting `x`.öh]ö(hî'with only those columns from the input öůöüö}ö(hî'with only those columns from the input öhj░ ubj2 )üö}ö(hî`z`öh]öhîzöůöüö}ö(hhhj╣ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj░ ubhîg which have an R^2
above the threshold when using that column as an input
to a linear model predicting öůöüö}ö(hîg which have an R^2
above the threshold when using that column as an input
to a linear model predicting öhj░ ubj2 )üö}ö(hî`x`öh]öhîxöůöüö}ö(hhhj╠ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj░ ubhî.öůöüö}ö(hjX hj░ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj_ hKhjş ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjŤ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj_ hK
hjś ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj% hhhj_ hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj╚ hhhjŢ hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îfit() (maui.Maui method)öî
maui.Maui.fitöhNtöauh)h,hhÍhhhîF/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.fitöhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî&Maui.fit(X, y=None, X_validation=None)öh]ö(hl)üö}ö(hîfitöh]öhîfitöůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj hhhîF/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.fitöhNubh|)üö}ö(hîX, y=None, X_validation=Noneöh]ö(hé)üö}ö(hîXöh]öhîXöůöüö}ö(hhhj- ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj) ubhé)üö}ö(hîy=Noneöh]öhîy=Noneöůöüö}ö(hhhj; ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj) ubhé)üö}ö(hîX_validation=Noneöh]öhîX_validation=Noneöůöüö}ö(hhhjI ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj) ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj hhhj( hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjc ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj` ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.fitöîrefdocöh└uh)hťhj] ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh¤ëhđîmauiöhĎhohËj| uh)hBhj hhhj( hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîTrain autoencoder modelöh]öhîTrain autoencoder modelöůöüö}ö(hjĹ hjĆ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjî hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîÎX: dict with multi-modal dataframes, containing training data, e.g.
{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrame's.
The sample names must match, the feature names need not.öh]ö(j )üö}ö(hîDX: dict with multi-modal dataframes, containing training data, e.g.öh]öhîDX: dict with multi-modal dataframes, containing training data, e.g.öůöüö}ö(hjŽ hjĄ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj hKhjá ubj )üö}ö(hhh]öh┌)üö}ö(hîĺ{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrame's.
The sample names must match, the feature names need not.öh]öhîť{ÔÇśmRNAÔÇÖ: df1, ÔÇśSNPÔÇÖ: df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrameÔÇÖs.
The sample names must match, the feature names need not.öůöüö}ö(hjĚ hjÁ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjá ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj hKhjŁ ubh■)üö}ö(hîőX_validation: optional, dict with multi-modal dataframes, containing validation data
will be used to compute validation loss under trainingöh]ö(j )üö}ö(hîTX_validation: optional, dict with multi-modal dataframes, containing validation dataöh]öhîTX_validation: optional, dict with multi-modal dataframes, containing validation dataöůöüö}ö(hjŇ hjË ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj hK hj¤ ubj )üö}ö(hhh]öh┌)üö}ö(hî6will be used to compute validation loss under trainingöh]öhî6will be used to compute validation loss under trainingöůöüö}ö(hjŠ hjń ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hK
hjß ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj¤ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj hK hjŁ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hjî hhhj hNubh┌)üö}ö(hî
y: Not used.öh]öhî
y: Not used.öůöüö}ö(hj
hj
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjî hhubh┌)üö}ö(hîself : Maui objectöh]öhîself : Maui objectöůöüö}ö(hj
hj
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjî hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj hhhj( hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j-
j ëuh)h=hhhhÍhj hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î"fit_transform() (maui.Maui method)öîmaui.Maui.fit_transformöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî@Maui.fit_transform(X, y=None, X_validation=None, encoder='mean')öh]ö(hl)üö}ö(hî
fit_transformöh]öhî
fit_transformöůöüö}ö(hhhjC
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj?
hhhîP/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.fit_transformöhNubh|)üö}ö(hî,X, y=None, X_validation=None, encoder='mean'öh]ö(hé)üö}ö(hj/ h]öhîXöůöüö}ö(hhhjV
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjR
ubhé)üö}ö(hîy=Noneöh]öhîy=Noneöůöüö}ö(hhhjc
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjR
ubhé)üö}ö(hîX_validation=Noneöh]öhîX_validation=Noneöůöüö}ö(hhhjq
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjR
ubhé)üö}ö(hîencoder='mean'öh]öhîencoder='mean'öůöüö}ö(hhhj
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjR
ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj?
hhhjQ
hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjÖ
ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhjľ
ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.fit_transformöîrefdocöh└uh)hťhjô
ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj?
hhhNhNubeh}ö(h]öj:
ah!]öh#]öj:
ah%]öh']öh¤ëhđîmauiöhĎhohËj▓
uh)hBhj<
hhhjQ
hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîSTrain autoencoder model, and return the latent factor representation
of the data X.öh]öhîSTrain autoencoder model, and return the latent factor representation
of the data X.öůöüö}ö(hjă
hj┼
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîP/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.fit_transformöhKhj┬
hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîÎX: dict with multi-modal dataframes, containing training data, e.g.
{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_samples, n_features) pandas.DataFrame's.
The sample names must match, the feature names need not.öh]ö(j )üö}ö(hîDX: dict with multi-modal dataframes, containing training data, e.g.öh]öhîDX: dict with multi-modal dataframes, containing training data, e.g.öůöüö}ö(hjŢ
hj█
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjË
hKhjÎ
ubj )üö}ö(hhh]öh┌)üö}ö(hîĺ{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_samples, n_features) pandas.DataFrame's.
The sample names must match, the feature names need not.öh]öhîť{ÔÇśmRNAÔÇÖ: df1, ÔÇśSNPÔÇÖ: df2},
df1, df2, etc. are (n_samples, n_features) pandas.DataFrameÔÇÖs.
The sample names must match, the feature names need not.öůöüö}ö(hjţ
hjý
ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjË
hKhjÚ
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjÎ
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjË
hKhjď
ubh■)üö}ö(hîőX_validation: optional, dict with multi-modal dataframes, containing validation data
will be used to compute validation loss under trainingöh]ö(j )üö}ö(hîTX_validation: optional, dict with multi-modal dataframes, containing validation dataöh]öhîTX_validation: optional, dict with multi-modal dataframes, containing validation dataöůöüö}ö(hj hj
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjË
hK
hj ubj )üö}ö(hhh]öh┌)üö}ö(hî6will be used to compute validation loss under trainingöh]öhî6will be used to compute validation loss under trainingöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjË
hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjË
hK
hjď
hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hj┬
hhhjË
hNubh┌)üö}ö(hî
y: Not used.öh]öhî
y: Not used.öůöüö}ö(hj= hj; hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjË
hKhj┬
hhubh¨)üö}ö(hhh]öh■)üö}ö(hîXz: DataFrame (n_samples, n_latent_factors)
Latent factors representation of the data X.öh]ö(j )üö}ö(hî+z: DataFrame (n_samples, n_latent_factors)öh]öhî+z: DataFrame (n_samples, n_latent_factors)öůöüö}ö(hjR hjP ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjË
hKhjL ubj )üö}ö(hhh]öh┌)üö}ö(hî,Latent factors representation of the data X.öh]öhî,Latent factors representation of the data X.öůöüö}ö(hjc hja ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjË
hKhj^ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjL ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjË
hKhjI ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj┬
hhhjË
hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj<
hhhjQ
hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj jÄ j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î'get_linear_weights() (maui.Maui method)öîmaui.Maui.get_linear_weightsöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîMaui.get_linear_weights()öh]ö(hl)üö}ö(hîget_linear_weightsöh]öhîget_linear_weightsöůöüö}ö(hhhjĄ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhjá hhhîU/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.get_linear_weightsöhNubh|)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hjá hhhj▓ hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj┬ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj┐ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.get_linear_weightsöîrefdocöh└uh)hťhj╝ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhjá hhhNhNubeh}ö(h]öjŤ ah!]öh#]öjŤ ah%]öh']öh¤ëhđîmauiöhĎhohËj█ uh)hBhjŁ hhhj▓ hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hî├Get linear model coefficients obtained from fitting linear models
predicting feature values from latent factors. One model is fit per latent
factor, and the coefficients are stored in the matrix.öh]öhî├Get linear model coefficients obtained from fitting linear models
predicting feature values from latent factors. One model is fit per latent
factor, and the coefficients are stored in the matrix.öůöüö}ö(hj hjţ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîU/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.get_linear_weightsöhKhjŰ hhubh¨)üö}ö(hhh]öh■)üö}ö(hîÜW: (n_features, n_latent_factors) DataFrame
w_{ij} is the coefficient associated with feature `i` in a linear model
predicting it from latent factor `j`.öh]ö(j )üö}ö(hî,W: (n_features, n_latent_factors) DataFrameöh]öhî,W: (n_features, n_latent_factors) DataFrameöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjŘ hKhj ubj )üö}ö(hhh]öh┌)üö}ö(hîmw_{ij} is the coefficient associated with feature `i` in a linear model
predicting it from latent factor `j`.öh]ö(hî2w_{ij} is the coefficient associated with feature öůöüö}ö(hî2w_{ij} is the coefficient associated with feature öhj ubj2 )üö}ö(hî`i`öh]öhîiöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj ubhî4 in a linear model
predicting it from latent factor öůöüö}ö(hî4 in a linear model
predicting it from latent factor öhj ubj2 )üö}ö(hî`j`öh]öhîjöůöüö}ö(hhhj1 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj ubhî.öůöüö}ö(hjX hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjŘ hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjŘ hKhjř ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hjŰ hhhjŘ hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhjŁ hhhj▓ hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj jh j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î load() (maui.Maui static method)öîmaui.Maui.loadöhNtöauh)h,hhÍhhhîG/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.loadöhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîMaui.load(dir)öh]ö(hI)üö}ö(hîstatic öh]öhîstatic öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hHhj{ hhhîG/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.loadöhNubhl)üö}ö(hîloadöh]öhîloadöůöüö}ö(hhhjÄ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj{ hhhjŹ hNubh|)üö}ö(hîdiröh]öhé)üö}ö(hîdiröh]öhîdiröůöüö}ö(hhhjá ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjť ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj{ hhhjŹ hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj║ ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhjĚ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöî Maui.loadöîrefdocöh└uh)hťhj┤ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj{ hhhNhNubeh}ö(h]öju ah!]öh#]öju ah%]öh']öh¤ëhđîmauiöhĎhohËjË uh)hBhjx hhhjŹ hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîHLoad a maui model from disk, which was previously saved using ``save()``öh]ö(hî>Load a maui model from disk, which was previously saved using öůöüö}ö(hî>Load a maui model from disk, which was previously saved using öhjŠ hhhNhNubj║ )üö}ö(hî
``save()``öh]öhîsave()öůöüö}ö(hhhj´ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjŠ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjw hKhjŃ hhubh┌)üö}ö(hî7dir: The directory from which to load the maui modelöh]öhî7dir: The directory from which to load the maui modelöůöüö}ö(hj
hj
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjw hKhjŃ hhubh┌)üö}ö(hî:maui_model: a maui model that was previously saved to disköh]öhî:maui_model: a maui model that was previously saved to disköůöüö}ö(hj
hj
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjw hKhjŃ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhjx hhhjŹ hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îstaticmethodöj j,
j ëuh)h=hhhhÍhjw hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î1merge_similar_latent_factors() (maui.Maui method)öî&maui.Maui.merge_similar_latent_factorsöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî╩Maui.merge_similar_latent_factors(distance_in='z', distance_metric='correlation', linkage_method='complete', distance_threshold=0.17, merge_fn=<function mean>, plot_dendrogram=True, plot_dendro_ax=None)öh]ö(hl)üö}ö(hîmerge_similar_latent_factorsöh]öhîmerge_similar_latent_factorsöůöüö}ö(hhhjB
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj>
hhhî_/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.merge_similar_latent_factorsöhNubh|)üö}ö(hîždistance_in='z', distance_metric='correlation', linkage_method='complete', distance_threshold=0.17, merge_fn=<function mean>, plot_dendrogram=True, plot_dendro_ax=Noneöh]ö(hé)üö}ö(hîdistance_in='z'öh]öhîdistance_in='z'öůöüö}ö(hhhjU
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîdistance_metric='correlation'öh]öhîdistance_metric='correlation'öůöüö}ö(hhhjc
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîlinkage_method='complete'öh]öhîlinkage_method='complete'öůöüö}ö(hhhjq
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîdistance_threshold=0.17öh]öhîdistance_threshold=0.17öůöüö}ö(hhhj
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîmerge_fn=<function mean>öh]öhîmerge_fn=<function mean>öůöüö}ö(hhhjŹ
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîplot_dendrogram=Trueöh]öhîplot_dendrogram=Trueöůöüö}ö(hhhjŤ
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubhé)üö}ö(hîplot_dendro_ax=Noneöh]öhîplot_dendro_ax=Noneöůöüö}ö(hhhję
ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjQ
ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj>
hhhjP
hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj├
ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj└
ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöî!Maui.merge_similar_latent_factorsöîrefdocöh└uh)hťhjŻ
ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj>
hhhNhNubeh}ö(h]öj9
ah!]öh#]öj9
ah%]öh']öh¤ëhđîmauiöhĎhohËj▄
uh)hBhj;
hhhjP
hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîąMerge latent factorz in z whose distance is below a certain threshold.
Used to squeeze down latent factor representations if there are many co-linear
latent factors.öh]öhîąMerge latent factorz in z whose distance is below a certain threshold.
Used to squeeze down latent factor representations if there are many co-linear
latent factors.öůöüö}ö(hj˝
hj´
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hî_/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.merge_similar_latent_factorsöhKhjý
hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîĂdistance_in: If 'z', latent factors will be merged based on their distance
to each other in 'z'. If 'w', favtors will be merged based
on their distance in 'w' (see :func:`get_linear_weights`)öh]ö(j )üö}ö(hîQdistance_in: If 'z', latent factors will be merged based on their distanceöh]öhîUdistance_in: If ÔÇśzÔÇÖ, latent factors will be merged based on their distanceöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhj ubj )üö}ö(hhh]öh┌)üö}ö(hîtto each other in 'z'. If 'w', favtors will be merged based
on their distance in 'w' (see :func:`get_linear_weights`)öh]ö(hîeto each other in ÔÇśzÔÇÖ. If ÔÇśwÔÇÖ, favtors will be merged based
on their distance in ÔÇśwÔÇÖ (see öůöüö}ö(hîYto each other in 'z'. If 'w', favtors will be merged based
on their distance in 'w' (see öhj ubhŁ)üö}ö(hî:func:`get_linear_weights`öh]öj║ )üö}ö(hj! h]öhîget_linear_weights()öůöüö}ö(hhhj# ubah}ö(h]öh!]ö(îxreföîpyöîpy-funcöeh#]öh%]öh']öuh)j╣ hj ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöj. îrefexplicitöëî py:moduleöjŰ
îpy:classöhoî reftargetöîget_linear_weightsöîrefdocöh└îrefwarnöëuh)hťhjř
hKhj ubhî)öůöüö}ö(hj═ hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhj■
ubh■)üö}ö(hîÄdistance_metric: The distance metric based on which to merge latent factors.
One which is supported by :func:`scipy.spatial.distance.pdist`öh]ö(j )üö}ö(hîOdistance_metric: The distance metric based on which to merge latent factors.öh]öhîOdistance_metric: The distance metric based on which to merge latent factors.öůöüö}ö(hj_ hj] ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hK
hjY ubj )üö}ö(hhh]öh┌)üö}ö(hî>One which is supported by :func:`scipy.spatial.distance.pdist`öh]ö(hîOne which is supported by öůöüö}ö(hîOne which is supported by öhjn ubhŁ)üö}ö(hî$:func:`scipy.spatial.distance.pdist`öh]öj║ )üö}ö(hjy h]öhîscipy.spatial.distance.pdist()öůöüö}ö(hhhj{ ubah}ö(h]öh!]ö(j- îpyöîpy-funcöeh#]öh%]öh']öuh)j╣ hjw ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjů îrefexplicitöëj= jŰ
j> hoj? îscipy.spatial.distance.pdistöjA h└jB ëuh)hťhjř
hKhjn ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhjk ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjY ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hK
hj■
hhubh■)üö}ö(hîëlinkage_method: The linkage method used to cluster latent factors. One which
is supported by :func:`scipy.cluster.hierarchy.linkage`.öh]ö(j )üö}ö(hîPlinkage_method: The linkage method used to cluster latent factors. One whichöh]öhîPlinkage_method: The linkage method used to cluster latent factors. One whichöůöüö}ö(hjş hjź ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhjž ubj )üö}ö(hhh]öh┌)üö}ö(hî8is supported by :func:`scipy.cluster.hierarchy.linkage`.öh]ö(hîis supported by öůöüö}ö(hîis supported by öhj╝ ubhŁ)üö}ö(hî':func:`scipy.cluster.hierarchy.linkage`öh]öj║ )üö}ö(hjă h]öhî!scipy.cluster.hierarchy.linkage()öůöüö}ö(hhhj╔ ubah}ö(h]öh!]ö(j- îpyöîpy-funcöeh#]öh%]öh']öuh)j╣ hj┼ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjË îrefexplicitöëj= jŰ
j> hoj? îscipy.cluster.hierarchy.linkageöjA h└jB ëuh)hťhjř
hK
hj╝ ubhî.öůöüö}ö(hjX hj╝ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hK
hj╣ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjž ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhj■
hhubh■)üö}ö(hîTdistance_threshold: Latent factors with distance below this threshold
will be mergedöh]ö(j )üö}ö(hîEdistance_threshold: Latent factors with distance below this thresholdöh]öhîEdistance_threshold: Latent factors with distance below this thresholdöůöüö}ö(hj hjř ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhj¨ ubj )üö}ö(hhh]öh┌)üö}ö(hîwill be mergedöh]öhîwill be mergedöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj¨ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhj■
hhubh■)üö}ö(hî╣merge_fn: Function used to determine value of merged latent factor.
The default is :func:`numpy.mean`, meaning the merged
latent factor will have the mean value of the inputs.öh]ö(j )üö}ö(hîMmerge_fn: Function used to determine value of merged latent factor.öh]öhîMmerge_fn: Function used to determine value of merged latent factor.öůöüö}ö(hj. hj, ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhj( ubj )üö}ö(hhh]öh┌)üö}ö(hîkThe default is :func:`numpy.mean`, meaning the merged
latent factor will have the mean value of the inputs.öh]ö(hîThe default is öůöüö}ö(hîThe default is öhj= ubhŁ)üö}ö(hî:func:`numpy.mean`öh]öj║ )üö}ö(hjH h]öhînumpy.mean()öůöüö}ö(hhhjJ ubah}ö(h]öh!]ö(j- îpyöîpy-funcöeh#]öh%]öh']öuh)j╣ hjF ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjT îrefexplicitöëj= jŰ
j> hoj? î
numpy.meanöjA h└jB ëuh)hťhjř
hKhj= ubhîJ, meaning the merged
latent factor will have the mean value of the inputs.öůöüö}ö(hîJ, meaning the merged
latent factor will have the mean value of the inputs.öhj= ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhj: ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj( ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhj■
hhubh■)üö}ö(hî}plot_dendrogram: Boolean. If true, a dendrogram will be plotted showing
which latent factors are merged and the threshold.öh]ö(j )üö}ö(hîJplot_dendrogram: Boolean. If true, a dendrogram will be plotted showingöh]öhîJplot_dendrogram: Boolean. If true, a dendrogram will be plotted showingöůöüö}ö(hjü hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhj{ ubj )üö}ö(hhh]öh┌)üö}ö(hî2which latent factors are merged and the threshold.öh]öhî2which latent factors are merged and the threshold.öůöüö}ö(hjĺ hjÉ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhjŹ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhj■
hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hjý
hhhjř
hNubh┌)üö}ö(hîQplot_dendro_ax: A matplotlib axis object to plot the dendrogram on (optional)öh]öhîQplot_dendro_ax: A matplotlib axis object to plot the dendrogram on (optional)öůöüö}ö(hj▓ hj░ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhjý
hhubh¨)üö}ö(hhh]öh■)üö}ö(hîez: (n_samples, n_factors) pd.DataFrame of latent factors
where some have been mergedöh]ö(j )üö}ö(hîIz: (n_samples, n_factors) pd.DataFrame of latent factorsöh]öhîIz: (n_samples, n_factors) pd.DataFrame of latent factorsöůöüö}ö(hjă hj┼ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř
hKhj┴ ubj )üö}ö(hhh]öh┌)üö}ö(hîwhere some have been mergedöh]öhîwhere some have been mergedöůöüö}ö(hjě hjÍ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjř
hKhjË ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj┴ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhjř
hKhjż ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hjý
hhhjř
hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj;
hhhjP
hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îsave() (maui.Maui method)öîmaui.Maui.saveöhNtöauh)h,hhÍhhhîG/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.saveöhNubh>)üö}ö(hhh]ö(hC)üö}ö(hîMaui.save(destdir)öh]ö(hl)üö}ö(hîsaveöh]öhîsaveöůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhj hhhîG/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.saveöhNubh|)üö}ö(hîdestdiröh]öhé)üö}ö(hîdestdiröh]öhîdestdiröůöüö}ö(hhhj- ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj) ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hj hhhj( hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjG ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhjD ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöî Maui.saveöîrefdocöh└uh)hťhjA ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh¤ëhđîmauiöhĎhohËj` uh)hBhj hhhj( hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîLSave a maui model to disk, so that it may be reloaded later using ``load()``öh]ö(hîBSave a maui model to disk, so that it may be reloaded later using öůöüö}ö(hîBSave a maui model to disk, so that it may be reloaded later using öhjs hhhNhNubj║ )üö}ö(hî
``load()``öh]öhîload()öůöüö}ö(hhhj| ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjs ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjp hhubh┌)üö}ö(hî>destdir: destination directory in which to save model filesöh]öhî>destdir: destination directory in which to save model filesöůöüö}ö(hjĺ hjÉ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj hKhjp hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj hhhj( hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj jź j ëuh)h=hhhhÍhj hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î,select_clinical_factors() (maui.Maui method)öî!maui.Maui.select_clinical_factorsöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî{Maui.select_clinical_factors(survival, duration_column='duration', observed_column='observed', alpha=0.05, cox_penalizer=0)öh]ö(hl)üö}ö(hîselect_clinical_factorsöh]öhîselect_clinical_factorsöůöüö}ö(hhhj┴ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhjŻ hhhîZ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.select_clinical_factorsöhNubh|)üö}ö(hî]survival, duration_column='duration', observed_column='observed', alpha=0.05, cox_penalizer=0öh]ö(hé)üö}ö(hîsurvivalöh]öhîsurvivalöůöüö}ö(hhhjď ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjđ ubhé)üö}ö(hîduration_column='duration'öh]öhîduration_column='duration'öůöüö}ö(hhhjÔ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjđ ubhé)üö}ö(hîobserved_column='observed'öh]öhîobserved_column='observed'öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjđ ubhé)üö}ö(hî
alpha=0.05öh]öhî
alpha=0.05öůöüö}ö(hhhj■ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjđ ubhé)üö}ö(hîcox_penalizer=0öh]öhîcox_penalizer=0öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühjđ ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hjŻ hhhj¤ hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj& ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj# ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.select_clinical_factorsöîrefdocöh└uh)hťhj ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhjŻ hhhNhNubeh}ö(h]öjŞ ah!]öh#]öjŞ ah%]öh']öh¤ëhđîmauiöhĎhohËj? uh)hBhj║ hhhj¤ hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hX' Select latent factors which are predictive of survival. This is
accomplished by fitting a Cox Proportional Hazards (CPH) model to each
latent factor, while controlling for known covariates, and only keeping
those latent factors whose coefficient in the CPH is nonzero (adjusted
p-value < alpha).öh]öhX' Select latent factors which are predictive of survival. This is
accomplished by fitting a Cox Proportional Hazards (CPH) model to each
latent factor, while controlling for known covariates, and only keeping
those latent factors whose coefficient in the CPH is nonzero (adjusted
p-value < alpha).öůöüö}ö(hjT hjR hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîZ/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.select_clinical_factorsöhKhjO hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîÇsurvival: pd.DataFrame of survival information and relevant covariates
(such as sex, age at diagnosis, or tumor stage)öh]ö(j )üö}ö(hîPsurvival: pd.DataFrame of survival information and relevant covariatesöh]öhîPsurvival: pd.DataFrame of survival information and relevant covariatesöůöüö}ö(hjj hjh ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj` hK hjd ubj )üö}ö(hhh]öh┌)üö}ö(hî/(such as sex, age at diagnosis, or tumor stage)öh]öhî/(such as sex, age at diagnosis, or tumor stage)öůöüö}ö(hj{ hjy ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hK
hjv ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjd ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj` hK hja ubh■)üö}ö(hîćduration_column: the name of the column in ``survival`` containing the
duration (time between diagnosis and death or last followup)öh]ö(j )üö}ö(hîIduration_column: the name of the column in ``survival`` containing theöh]ö(hî.duration_column: the name of the column in öůöüö}ö(hî.duration_column: the name of the column in öhjŚ ubj║ )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjá ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjŚ ubhî containing theöůöüö}ö(hî containing theöhjŚ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hj` hKhjô ubj )üö}ö(hhh]öh┌)üö}ö(hî<duration (time between diagnosis and death or last followup)öh]öhî<duration (time between diagnosis and death or last followup)öůöüö}ö(hjż hj╝ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hKhj╣ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjô ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj` hKhja hhubh■)üö}ö(hîoobserved_column: the name of the column in ``survival`` containing
indicating whether time of death is knownöh]ö(j )üö}ö(hîEobserved_column: the name of the column in ``survival`` containingöh]ö(hî.observed_column: the name of the column in öůöüö}ö(hî.observed_column: the name of the column in öhj┌ ubj║ )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjŃ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hj┌ ubhî containingöůöüö}ö(hî containingöhj┌ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hj` hK
hjÍ ubj )üö}ö(hhh]öh┌)üö}ö(hî)indicating whether time of death is knownöh]öhî)indicating whether time of death is knownöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hKhjŘ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjÍ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj` hK
hja hhubh■)üö}ö(hîualpha: threshold for p-value of CPH coefficients to call a latent
factor clinically relevant (p < alpha)öh]ö(j )üö}ö(hîNalpha: threshold for p-value of CPH coefficients to call a latentöh]öhîNalpha: threshold for p-value of CPH coefficients to call a latentöůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj` hKhj ubj )üö}ö(hhh]öh┌)üö}ö(hî&factor clinically relevant (p < alpha)öh]öhî&factor clinically relevant (p < alpha)öůöüö}ö(hj0 hj. ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hKhj+ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhj` hKhja hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hjO hhhj` hNubh┌)üö}ö(hîXcox_penalizer: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)öh]ö(hî>cox_penalizer: penalty coefficient in Cox PH solver (see öůöüö}ö(hî>cox_penalizer: penalty coefficient in Cox PH solver (see öhjN hhhNhNubj║ )üö}ö(hî``lifelines.CoxPHFitter``öh]öhîlifelines.CoxPHFitteröůöüö}ö(hhhjW ubah}ö(h]öh!]öh#]öh%]öh']öuh)j╣ hjN ubhî)öůöüö}ö(hj═ hjN hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hKhjO hhubh¨)üö}ö(hhh]öh■)üö}ö(hî«z_clinical: pd.DataFrame, subset of the latent factors which have been
determined to have clinical value (are individually predictive
of survival, controlling for covariates)öh]ö(j )üö}ö(hîFz_clinical: pd.DataFrame, subset of the latent factors which have beenöh]öhîFz_clinical: pd.DataFrame, subset of the latent factors which have beenöůöüö}ö(hjx hjv ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj` hKhjr ubj )üö}ö(hhh]öh┌)üö}ö(hîgdetermined to have clinical value (are individually predictive
of survival, controlling for covariates)öh]öhîgdetermined to have clinical value (are individually predictive
of survival, controlling for covariates)öůöüö}ö(hjë hjç ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj` hKhjä ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjr ubeh}ö(h]öh!]öĽęU h#]öh%]öh']öuh)hřhj` hKhjo ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hjO hhhj` hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj║ hhhj¤ hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j┤ j ëuh)h=hhhhÍhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îtransform() (maui.Maui method)öîmaui.Maui.transformöhNtöauh)h,hhÍhhhNhNubh>)üö}ö(hhh]ö(hC)üö}ö(hî!Maui.transform(X, encoder='mean')öh]ö(hl)üö}ö(hî transformöh]öhî transformöůöüö}ö(hhhj╩ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hkhjĂ hhhîL/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.transformöhNubh|)üö}ö(hîX, encoder='mean'öh]ö(hé)üö}ö(hj/ h]öhîXöůöüö}ö(hhhjŢ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj┘ ubhé)üö}ö(hîencoder='mean'öh]öhîencoder='mean'öůöüö}ö(hhhjŕ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)hühj┘ ubeh}ö(h]öh!]öh#]öh%]öh']öhXhYuh)h{hjĂ hhhjě hNubhś)üö}ö(hhh]öhŁ)üö}ö(hhh]öhó)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj ubah}ö(h]öh!]öhşah#]öh%]öh']öuh)híhj ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöhŞî refdomainöh║îrefexplicitöëî reftargetöî_modules/maui/modelöîrefidöîMaui.transformöîrefdocöh└uh)hťhj■ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröh╚uh)hŚhjĂ hhhNhNubeh}ö(h]öj┴ ah!]öh#]öj┴ ah%]öh']öh¤ëhđîmauiöhĎhohËj uh)hBhj├ hhhjě hNubhŇ)üö}ö(hhh]ö(h┌)üö}ö(hîŐTransform X into the latent space that was previously learned using
`fit` or `fit_transform`, and return the latent factor representation.öh]ö(hîDTransform X into the latent space that was previously learned using
öůöüö}ö(hîDTransform X into the latent space that was previously learned using
öhj0 hhhNhNubj2 )üö}ö(hî`fit`öh]öhîfitöůöüö}ö(hhhj9 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj0 ubhî or öůöüö}ö(hî or öhj0 hhhNhNubj2 )üö}ö(hî`fit_transform`öh]öhî
fit_transformöůöüö}ö(hhhjL ubah}ö(h]öh!]öh#]öh%]öh']öuh)j1 hj0 ubhî., and return the latent factor representation.öůöüö}ö(hî., and return the latent factor representation.öhj0 hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h┘hîL/home/jona/work/phd/maui/maui/maui/model.py:docstring of maui.Maui.transformöhKhj- hhubh¨)üö}ö(hhh]ö(h■)üö}ö(hîŽX: dict with multi-modal dataframes, containing training data, e.g.
{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrame's.öh]ö(j )üö}ö(hîLX: dict with multi-modal dataframes, containing training data, e.g.öh]öhîLX: dict with multi-modal dataframes, containing training data, e.g.öůöüö}ö(hjo hjm ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hje hKhji ubj )üö}ö(hhh]öh┌)üö}ö(hîY{'mRNA': df1, 'SNP': df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrame's.öh]öhîc{ÔÇśmRNAÔÇÖ: df1, ÔÇśSNPÔÇÖ: df2},
df1, df2, etc. are (n_features, n_samples) pandas.DataFrameÔÇÖs.öůöüö}ö(hjÇ hj~ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hje hKhj{ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hji ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhje hKhjf ubh■)üö}ö(hXC encoder: the mode of the encoder to be used. one of 'mean' or 'sample',
where 'mean' indicates the encoder network only uses the mean
estimates for each successive layer. 'sample' indicates the
encoder should sample from the distribution specified from each
successive layer, and results in non-reproducible embeddings.
öh]ö(j )üö}ö(hîJencoder: the mode of the encoder to be used. one of 'mean' or 'sample',öh]öhîRencoder: the mode of the encoder to be used. one of ÔÇśmeanÔÇÖ or ÔÇśsampleÔÇÖ,öůöüö}ö(hj× hjť ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hje hK
hjś ubj )üö}ö(hhh]öh┌)üö}ö(hî¸where 'mean' indicates the encoder network only uses the mean
estimates for each successive layer. 'sample' indicates the
encoder should sample from the distribution specified from each
successive layer, and results in non-reproducible embeddings.öh]öhî where ÔÇśmeanÔÇÖ indicates the encoder network only uses the mean
estimates for each successive layer. ÔÇśsampleÔÇÖ indicates the
encoder should sample from the distribution specified from each
successive layer, and results in non-reproducible embeddings.öůöüö}ö(hj» hjş ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hje hK
hj¬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjś ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhje hK
hjf hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)h°hj- hhhje hNubh¨)üö}ö(hhh]öh■)üö}ö(hîXz: DataFrame (n_samples, n_latent_factors)
Latent factors representation of the data X.öh]ö(j )üö}ö(hî+z: DataFrame (n_samples, n_latent_factors)öh]öhî+z: DataFrame (n_samples, n_latent_factors)öůöüö}ö(hjÍ hjď ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hje hKhjđ ubj )üö}ö(hhh]öh┌)üö}ö(hî,Latent factors representation of the data X.öh]öhî,Latent factors representation of the data X.öůöüö}ö(hjš hjň ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hje hKhjÔ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjđ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)hřhje hKhj═ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h°hj- hhhje hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhj├ hhhjě hNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îmethodöj j j ëuh)h=hhhhÍhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hďhh?hhhhZhNubeh}ö(h]öh!]öh#]öh%]öh']öj îpyöj îclassöj j j ëuh)h=hhhhhNhNubeh}ö(h]öîthe-maui-classöah!]öh#]öîthe maui classöah%]öh']öuh)h hhhhhh*hKubah}ö(h]öh!]öh#]öh%]öh']öîsourceöh*uh)hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(hNî generatoröNî datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî tracebacköłîinput_encodingöî utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröjL îerror_encodingöîUTF-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh*î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(j& j# h;h;j j j j jş jş jë jë jĂ jĂ j j j:
j:
jŤ jŤ ju ju j9
j9
j j jŞ jŞ j┴ j┴ uî nametypesö}ö(j& Nh;łj łj łjş łjë łjĂ łj łj:
łjŤ łju łj9
łj łjŞ łj┴ łuh}ö(j# hh;hDj j j j jş j│ jG h îsystem_messageöôö)üö}ö(hhh]öh┌)üö}ö(hî.Inline strong start-string without end-string.öh]öhî.Inline strong start-string without end-string.öůöüö}ö(hhhjô ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjÉ ubah}ö(h]öjG ah!]öh#]öh%]öh']öjA aîlevelöKîtypeöîWARNINGöîlineöKîsourceöj» uh)jÄ hj hhhj» hKubjA j7 jë jÄ jZ jĆ )üö}ö(hhh]öh┌)üö}ö(hî.Inline strong start-string without end-string.öh]öhî.Inline strong start-string without end-string.öůöüö}ö(hhhj» ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjČ ubah}ö(h]öjZ ah!]öh#]öh%]öh']öjT aîlevelöKîtypeöję îlineöK
îsourceöj@ uh)jÄ hj§ hhhj@ hKubjT jJ jĂ j╦ j j j:
j?
jŤ já ju j{ j9
j>
j j jŞ jŻ j┴ jĂ uî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî footnotesö]öî citationsö]öîautofootnote_startöKîsymbol_footnote_startöK îid_startöKîparse_messagesö]ö(jĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj▀ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj▄ ubh î
literal_blocköôö)üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj´ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj▄ hhÚubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöîSEVEREöîsourceöhÚîlineöKuh)jÄ hhÍhhhhÚhKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj hjp ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjp îlineöKuh)jÄ hj_ hhhjp hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhj4 ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj1 ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöîERRORöîsourceöjp îlineöKuh)jÄ hj_ hhhjp hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî;Block quote ends without a blank line; unexpected unindent.öh]öhî;Block quote ends without a blank line; unexpected unindent.öůöüö}ö(hhhjP ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjM ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöK îsourceöjp uh)jÄ hj_ hhhjp hNubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjk ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjh ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöjp uh)jÄ hj_ hhhjp hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjć ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjâ ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjö ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjâ hjp ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjp îlineöKuh)jÄ hj_ hhhjp hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj» ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjČ ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjŻ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjČ hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj îlineöKuh)jÄ hjĂ hhhj hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjě ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjŇ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöj uh)jÄ hjĂ hhhj hK
ubjĆ )üö}ö(hhh]öh┌)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhjˇ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjJ îsourceöj îlineöKuh)jÄ hjĂ hhhj hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî;Block quote ends without a blank line; unexpected unindent.öh]öhî;Block quote ends without a blank line; unexpected unindent.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöj uh)jÄ hjĂ hhhj hNubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj) ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj& ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj7 ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj& hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj îlineöKuh)jÄ hjĂ hhhj hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjR ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjO ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj` ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjO hj» ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj» îlineöKuh)jÄ hj hhhj» hKubjÉ jĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj{ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjx ubjţ )üö}ö(hîReturns:
--------öh]öhîReturns:
--------öůöüö}ö(hhhjë ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjx hj» ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj» îlineöK
uh)jÄ hj hhhj» hK
ubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjĄ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjí ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjí hj@ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj@ îlineöK uh)jÄ hj§ hhhj@ hK ubjČ jĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj═ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj╩ ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj█ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj╩ hj@ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj@ îlineöKuh)jÄ hj§ hhhj@ hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hhh]öhî┴duplicate object description of maui.Maui.drop_unexplanatory_factors, other instance in /home/jona/work/phd/maui/maui/doc/filtering-and-merging-latent-factors.rst, use :noindex: for one of themöůöüö}ö(hhhj÷ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjˇ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöjŢ uh)jÄ ubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj
ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj
hj_ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj_ îlineöKuh)jÄ hj% hhhj_ hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj9 ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj6 ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjG ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj6 hj_ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj_ îlineöK
uh)jÄ hj% hhhj_ hK
ubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjb ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj_ ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjp ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj_ hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj îlineöKuh)jÄ hjî hhhj hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjő ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjł ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöj uh)jÄ hjî hhhj hK
ubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjŽ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjú ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj┤ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjú hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj îlineöKuh)jÄ hjî hhhj hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj¤ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj╠ ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjŢ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj╠ hjË
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjË
îlineöKuh)jÄ hj┬
hhhjË
hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhj° ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj§ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöjË
uh)jÄ hj┬
hhhjË
hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj! ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj hjË
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjË
îlineöKuh)jÄ hj┬
hhhjË
hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj< ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj9 ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjJ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj9 hjŘ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjŘ îlineöKuh)jÄ hjŰ hhhjŘ hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhje ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjb ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjs ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjb hjw ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjw îlineöKuh)jÄ hjŃ hhhjw hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjÄ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjő ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjť ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjő hjw ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjw îlineöK uh)jÄ hjŃ hhhjw hK ubjĆ )üö}ö(hhh]öh┌)üö}ö(hhh]öhî├duplicate object description of maui.Maui.merge_similar_latent_factors, other instance in /home/jona/work/phd/maui/maui/doc/filtering-and-merging-latent-factors.rst, use :noindex: for one of themöůöüö}ö(hhhjĚ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj┤ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöjP
uh)jÄ ubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjĐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj╬ ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj▀ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj╬ hjř
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjř
îlineöKuh)jÄ hjý
hhhjř
hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhj˙ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj¸ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöjř
uh)jÄ hjý
hhhjř
hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj# ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj hjř
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöjř
îlineöKuh)jÄ hjý
hhhjř
hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj> ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj; ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjL ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj; hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj îlineöKuh)jÄ hjp hhhj hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjg ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjd ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhju ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjd hj` ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj` îlineöKuh)jÄ hjO hhhj` hKubjĆ )üö}ö(hhh]öh┌)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjÉ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjŹ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöję îlineöKîsourceöj` uh)jÄ hjO hhhj` hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjź ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjĘ ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj╣ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjĘ hj` ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöj` îlineöKuh)jÄ hjO hhhj` hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjď ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hjĐ ubjţ )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjÔ ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hjĐ hje ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöje îlineöKuh)jÄ hj- hhhje hKubjĆ )üö}ö(hhh]ö(h┌)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjř ubah}ö(h]öh!]öh#]öh%]öh']öuh)h┘hj˙ ubjţ )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhXhYuh)jÝ hj˙ hje ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj îsourceöje îlineöKuh)jÄ hj- hhhje hKubeîtransform_messagesö]öîtransformeröNî
decorationöNhhub.