23 lines (21 with data), 12.4 kB
ÇĽE0 îdocutils.nodesöîdocumentöôö)üö}ö(î rawsourceöî öîchildrenö]öh îsectionöôö)üö}ö(hhh]ö(h îtitleöôö)üö}ö(hî*Multi-omics Autoencoder Integration (maui)öh]öh îTextöôöî*Multi-omics Autoencoder Integration (maui)öůöüö}ö(hhîparentöhhhîsourceöNîlineöNubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öuîtagnameöhhhhhhî+/home/jona/work/phd/maui/maui/doc/index.rstöhKubh î paragraphöôö)üö}ö(hî§maui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, :doc:`maui`, and :doc:`utils`. For an introduction of the use of autoencoders for multi-omics integration, see :doc:`autoencoder-integration`.öh]ö(hîgmaui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, öůöüö}ö(hîgmaui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, öhh-hhhNhNubîsphinx.addnodesöîpending_xreföôö)üö}ö(hî:doc:`maui`öh]öh îinlineöôö)üö}ö(hh;h]öhîmauiöůöüö}ö(hhhh?ubah}ö(h]öh!]ö(îxreföîstdöîstd-docöeh#]öh%]öh']öuh)h=hh9ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîdocöî refdomainöhJîrefexplicitöëî reftargetöîmauiöîrefdocöîindexöîrefwarnöłuh)h7hh*hKhh-ubhî, and öůöüö}ö(hî, and öhh-hhhNhNubh8)üö}ö(hî:doc:`utils`öh]öh>)üö}ö(hheh]öhîutilsöůöüö}ö(hhhhgubah}ö(h]öh!]ö(hIîstdöîstd-docöeh#]öh%]öh']öuh)h=hhcubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîdocöî refdomainöhqîrefexplicitöëhYîutilsöh[h\h]łuh)h7hh*hKhh-ubhîR. For an introduction of the use of autoencoders for multi-omics integration, see öůöüö}ö(hîR. For an introduction of the use of autoencoders for multi-omics integration, see öhh-hhhNhNubh8)üö}ö(hî:doc:`autoencoder-integration`öh]öh>)üö}ö(hhłh]öhîautoencoder-integrationöůöüö}ö(hhhhŐubah}ö(h]öh!]ö(hIîstdöîstd-docöeh#]öh%]öh']öuh)h=hhćubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîdocöî refdomainöhöîrefexplicitöëhYîautoencoder-integrationöh[h\h]łuh)h7hh*hKhh-ubhî.öůöüö}ö(hî.öhh-hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hKhhhhubh
)üö}ö(hhh]ö(h)üö}ö(hîTable of contentsöh]öhîTable of contentsöůöüö}ö(hh┤hh▓hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhh»hhhh*hKubh îcompoundöôö)üö}ö(hhh]öh6îtoctreeöôö)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öhh\îentriesö]ö(Nîautoencoder-integrationöćöNîdata-normalizationöćöNî$filtering-and-merging-latent-factorsöćöNîsaving-and-loading-modelsöćöNîmauiöćöNîutilsöćöeîincludefilesö]ö(hĎhďhÍhěh┌h▄eîmaxdepthöKîcaptionöNîgloböëîhiddenöëî
includehiddenöëînumberedöK î
titlesonlyöëuh)h┼hh*hK
hh┬ubah}ö(h]öh!]öîtoctree-wrapperöah#]öh%]öh']öuh)h└hh»hhhh*hNubeh}ö(h]öîtable-of-contentsöah!]öh#]öîtable of contentsöah%]öh']öuh)h hhhhhh*hKubh
)üö}ö(hhh]ö(h)üö}ö(hî
Quickstartöh]öhî
Quickstartöůöüö}ö(hhűhh¨hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhh÷hhhh*hKubh,)üö}ö(hîÎThe ``Maui`` class implements ``scikit-learn``'s ``BaseEstimator``. In order to infer latent factors in multi-omics data, first instantiate a ``Maui`` model with the desired parameters, and then fit it to some data:öh]ö(hîThe öůöüö}ö(hîThe öhj hhhNhNubh îliteralöôö)üö}ö(hî``Maui``öh]öhîMauiöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubhî class implements öůöüö}ö(hî class implements öhj hhhNhNubj )üö}ö(hî``scikit-learn``öh]öhîscikit-learnöůöüö}ö(hhhj% ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubhîÔÇÖs öůöüö}ö(hî's öhj hhhNhNubj )üö}ö(hî``BaseEstimator``öh]öhî
BaseEstimatoröůöüö}ö(hhhj8 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubhîL. In order to infer latent factors in multi-omics data, first instantiate a öůöüö}ö(hîL. In order to infer latent factors in multi-omics data, first instantiate a öhj hhhNhNubj )üö}ö(hî``Maui``öh]öhîMauiöůöüö}ö(hhhjK ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubhîA model with the desired parameters, and then fit it to some data:öůöüö}ö(hîA model with the desired parameters, and then fit it to some data:öhj hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hKhh÷hhubh î
literal_blocköôö)üö}ö(hîáfrom maui import Maui
maui_model = maui.Maui(n_hidden=[900], n_latent=70, epochs=100)
z = maui_model.fit_transform({'mRNA': gex, 'Mutations': mut, 'CNV': cnv})öh]öhîáfrom maui import Maui
maui_model = maui.Maui(n_hidden=[900], n_latent=70, epochs=100)
z = maui_model.fit_transform({'mRNA': gex, 'Mutations': mut, 'CNV': cnv})öůöüö}ö(hhhjf ubah}ö(h]öh!]öh#]öh%]öh']öî xml:spaceöîpreserveöîlanguageöîpythonöîlinenosöëîhighlight_argsö}öuh)jd hh*hKhh÷hhubh,)üö}ö(hX┴ This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in ``gex``, ``mut``, and ``cnv`` to the fitting procedure. The omics data (``gex`` et. al.) are ``pandas.DataFrame`` objects of dimension (n_features, n_samples). The return object ``z`` is a ``pandas.DataFrame`` (n_samples, n_latent), and may be used for further analysis.öh]ö(hî│This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in öůöüö}ö(hî│This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in öhj{ hhhNhNubj )üö}ö(hî``gex``öh]öhîgexöůöüö}ö(hhhjä ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî, öůöüö}ö(hî, öhj{ hhhNhNubj )üö}ö(hî``mut``öh]öhîmutöůöüö}ö(hhhjŚ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî, and öůöüö}ö(hî, and öhj{ hhhNhNubj )üö}ö(hî``cnv``öh]öhîcnvöůöüö}ö(hhhj¬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî+ to the fitting procedure. The omics data (öůöüö}ö(hî+ to the fitting procedure. The omics data (öhj{ hhhNhNubj )üö}ö(hî``gex``öh]öhîgexöůöüö}ö(hhhjŻ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî et. al.) are öůöüö}ö(hî et. al.) are öhj{ hhhNhNubj )üö}ö(hî``pandas.DataFrame``öh]öhîpandas.DataFrameöůöüö}ö(hhhjđ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhîA objects of dimension (n_features, n_samples). The return object öůöüö}ö(hîA objects of dimension (n_features, n_samples). The return object öhj{ hhhNhNubj )üö}ö(hî``z``öh]öhîzöůöüö}ö(hhhjŃ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî is a öůöüö}ö(hî is a öhj{ hhhNhNubj )üö}ö(hî``pandas.DataFrame``öh]öhîpandas.DataFrameöůöüö}ö(hhhj÷ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj{ ubhî= (n_samples, n_latent), and may be used for further analysis.öůöüö}ö(hî= (n_samples, n_latent), and may be used for further analysis.öhj{ hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK"hh÷hhubh,)üö}ö(hî]In order to check the model's convergance, the ``hist`` object may be inspected, and plotted:öh]ö(hî1In order to check the modelÔÇÖs convergance, the öůöüö}ö(hî/In order to check the model's convergance, the öhj hhhNhNubj )üö}ö(hî``hist``öh]öhîhistöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj ubhî& object may be inspected, and plotted:öůöüö}ö(hî& object may be inspected, and plotted:öhj hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK$hh÷hhubje )üö}ö(hîmaui_model.hist.plot()öh]öhîmaui_model.hist.plot()öůöüö}ö(hhhj1 ubah}ö(h]öh!]öh#]öh%]öh']öjt ju jv îpythonöjx ëjy }öuh)jd hh*hK&hh÷hhubh îimageöôö)üö}ö(hî.. image:: _static/hist.png
öh]öh}ö(h]öh!]öh#]öh%]öh']öîuriöî_static/hist.pngöî
candidatesö}öî*öjN suh)jA hh÷hhhh*hK+ubh,)üö}ö(hîîFor a more comprehensive example, check out `our vignette <https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb>`_.öh]ö(hî,For a more comprehensive example, check out öůöüö}ö(hî,For a more comprehensive example, check out öhjR hhhNhNubh î referenceöôö)üö}ö(hî_`our vignette <https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb>`_öh]öhîour vignetteöůöüö}ö(hhhj] ubah}ö(h]öh!]öh#]öh%]öh']öînameöîour vignetteöîrefuriöîMhttps://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynböuh)j[ hjR ubh îtargetöôö)üö}ö(hîP <https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb>öh]öh}ö(h]öîour-vignetteöah!]öh#]öîour vignetteöah%]öh']öîrefuriöjn uh)jo î
referencedöKhjR ubhî.öůöüö}ö(hhĘhjR hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK,hh÷hhubh
)üö}ö(hhh]ö(h)üö}ö(hîIndices and tablesöh]öhîIndices and tablesöůöüö}ö(hjÄ hjî hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)hhjë hhhh*hK0ubh îbullet_listöôö)üö}ö(hhh]ö(h î list_itemöôö)üö}ö(hî:ref:`genindex`öh]öh,)üö}ö(hjú h]öh8)üö}ö(hjú h]öh>)üö}ö(hjú h]öhîgenindexöůöüö}ö(hhhjź ubah}ö(h]öh!]ö(hIîstdöîstd-reföeh#]öh%]öh']öuh)h=hjĘ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîreföî refdomainöjÁ îrefexplicitöëhYîgenindexöh[h\h]łuh)h7hh*hK2hją ubah}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK2hjí ubah}ö(h]öh!]öh#]öh%]öh']öuh)jč hjť hhhh*hNubjá )üö}ö(hî:ref:`modindex`öh]öh,)üö}ö(hjË h]öh8)üö}ö(hjË h]öh>)üö}ö(hjË h]öhîmodindexöůöüö}ö(hhhj█ ubah}ö(h]öh!]ö(hIîstdöîstd-reföeh#]öh%]öh']öuh)h=hjě ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîreföî refdomainöjň îrefexplicitöëhYîmodindexöh[h\h]łuh)h7hh*hK3hjŇ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK3hjĐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jč hjť hhhh*hNubjá )üö}ö(hî
:ref:`search`öh]öh,)üö}ö(hj h]öh8)üö}ö(hj h]öh>)üö}ö(hj h]öhîsearchöůöüö}ö(hhhj ubah}ö(h]öh!]ö(hIîstdöîstd-reföeh#]öh%]öh']öuh)h=hj ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîreföî refdomainöj îrefexplicitöëhYîsearchöh[h\h]łuh)h7hh*hK4hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h+hh*hK4hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)jč hjť hhhh*hNubeh}ö(h]öh!]öh#]öh%]öh']öîbulletöjQ uh)jÜ hh*hK2hjë hhubeh}ö(h]öîindices-and-tablesöah!]öh#]öîindices and tablesöah%]öh']öuh)h hh÷hhhh*hK0ubeh}ö(h]öî
quickstartöah!]öh#]öî
quickstartöah%]öh']öuh)h hhhhhh*hKubeh}ö(h]öî(multi-omics-autoencoder-integration-mauiöah!]öh#]öî*multi-omics autoencoder integration (maui)öah%]öh']öuh)h hhhhhh*hKubah}ö(h]öh!]öh#]öh%]öh']öîsourceöh*uh)hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(hNî generatoröNî datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî tracebacköłîinput_encodingöî utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröjs îerror_encodingöîUTF-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh*î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(jM jJ hˇhjE jB jz jw j= j: uî nametypesö}ö(jM NhˇNjE Njz łj= Nuh}ö(jJ hhh»jB h÷jw jq j: jë uî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî footnotesö]öî citationsö]öîautofootnote_startöKîsymbol_footnote_startöK îid_startöKîparse_messagesö]öîtransform_messagesö]öîtransformeröNî
decorationöNhhub.