[9bc947]: / doc / index.rst

Download this file

53 lines (31 with data), 1.8 kB

Multi-omics Autoencoder Integration (maui)

maui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, :doc:`maui`, and :doc:`utils`. For an introduction of the use of autoencoders for multi-omics integration, see :doc:`autoencoder-integration`.

Table of contents

Quickstart

The Maui class implements scikit-learn's BaseEstimator. In order to infer latent factors in multi-omics data, first instantiate a Maui model with the desired parameters, and then fit it to some data:

from maui import Maui

maui_model = maui.Maui(n_hidden=[900], n_latent=70, epochs=100)
z = maui_model.fit_transform({'mRNA': gex, 'Mutations': mut, 'CNV': cnv})

This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in gex, mut, and cnv to the fitting procedure. The omics data (gex et. al.) are pandas.DataFrame objects of dimension (n_features, n_samples). The return object z is a pandas.DataFrame (n_samples, n_latent), and may be used for further analysis.

In order to check the model's convergance, the hist object may be inspected, and plotted:

maui_model.hist.plot()
_static/hist.png

For a more comprehensive example, check out our vignette.

Indices and tables

  • :ref:`genindex`
  • :ref:`modindex`
  • :ref:`search`