Diff of /doc/index.rst [000000] .. [433586]

Switch to unified view

a b/doc/index.rst
1
Multi-omics Autoencoder Integration (maui)
2
==========================================
3
4
maui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, :doc:`maui`, and :doc:`utils`. For an introduction of the use of autoencoders for multi-omics integration, see :doc:`autoencoder-integration`.
5
6
7
Table of contents
8
-----------------
9
10
.. toctree::
11
   :maxdepth: 2
12
13
   autoencoder-integration
14
   data-normalization
15
   filtering-and-merging-latent-factors
16
   saving-and-loading-models
17
   maui
18
   utils
19
20
21
22
Quickstart
23
----------
24
25
The ``Maui`` class implements ``scikit-learn``'s ``BaseEstimator``. In order to infer latent factors in multi-omics data, first instantiate a ``Maui`` model with the desired parameters, and then fit it to some data:
26
27
.. code-block:: python
28
29
    from maui import Maui
30
31
    maui_model = maui.Maui(n_hidden=[900], n_latent=70, epochs=100)
32
    z = maui_model.fit_transform({'mRNA': gex, 'Mutations': mut, 'CNV': cnv})
33
34
This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in ``gex``, ``mut``, and ``cnv`` to the fitting procedure. The omics data (``gex`` et. al.) are ``pandas.DataFrame`` objects of dimension (n_features, n_samples). The return object ``z`` is a ``pandas.DataFrame`` (n_samples, n_latent), and may be used for further analysis.
35
36
In order to check the model's convergance, the ``hist`` object may be inspected, and plotted:
37
38
.. code-block:: python
39
40
    maui_model.hist.plot()
41
42
.. image:: _static/hist.png
43
44
For a more comprehensive example, check out `our vignette <https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb>`_.
45
46
47
Indices and tables
48
~~~~~~~~~~~~~~~~~~
49
50
* :ref:`genindex`
51
* :ref:`modindex`
52
* :ref:`search`