|
a |
|
b/doc/index.rst |
|
|
1 |
Multi-omics Autoencoder Integration (maui) |
|
|
2 |
========================================== |
|
|
3 |
|
|
|
4 |
maui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, :doc:`maui`, and :doc:`utils`. For an introduction of the use of autoencoders for multi-omics integration, see :doc:`autoencoder-integration`. |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
Table of contents |
|
|
8 |
----------------- |
|
|
9 |
|
|
|
10 |
.. toctree:: |
|
|
11 |
:maxdepth: 2 |
|
|
12 |
|
|
|
13 |
autoencoder-integration |
|
|
14 |
data-normalization |
|
|
15 |
filtering-and-merging-latent-factors |
|
|
16 |
saving-and-loading-models |
|
|
17 |
maui |
|
|
18 |
utils |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
Quickstart |
|
|
23 |
---------- |
|
|
24 |
|
|
|
25 |
The ``Maui`` class implements ``scikit-learn``'s ``BaseEstimator``. In order to infer latent factors in multi-omics data, first instantiate a ``Maui`` model with the desired parameters, and then fit it to some data: |
|
|
26 |
|
|
|
27 |
.. code-block:: python |
|
|
28 |
|
|
|
29 |
from maui import Maui |
|
|
30 |
|
|
|
31 |
maui_model = maui.Maui(n_hidden=[900], n_latent=70, epochs=100) |
|
|
32 |
z = maui_model.fit_transform({'mRNA': gex, 'Mutations': mut, 'CNV': cnv}) |
|
|
33 |
|
|
|
34 |
This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in ``gex``, ``mut``, and ``cnv`` to the fitting procedure. The omics data (``gex`` et. al.) are ``pandas.DataFrame`` objects of dimension (n_features, n_samples). The return object ``z`` is a ``pandas.DataFrame`` (n_samples, n_latent), and may be used for further analysis. |
|
|
35 |
|
|
|
36 |
In order to check the model's convergance, the ``hist`` object may be inspected, and plotted: |
|
|
37 |
|
|
|
38 |
.. code-block:: python |
|
|
39 |
|
|
|
40 |
maui_model.hist.plot() |
|
|
41 |
|
|
|
42 |
.. image:: _static/hist.png |
|
|
43 |
|
|
|
44 |
For a more comprehensive example, check out `our vignette <https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb>`_. |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
Indices and tables |
|
|
48 |
~~~~~~~~~~~~~~~~~~ |
|
|
49 |
|
|
|
50 |
* :ref:`genindex` |
|
|
51 |
* :ref:`modindex` |
|
|
52 |
* :ref:`search` |