|
a |
|
b/doc/_build/html/utils.html |
|
|
1 |
|
|
|
2 |
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" |
|
|
3 |
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
|
|
4 |
|
|
|
5 |
<html xmlns="http://www.w3.org/1999/xhtml"> |
|
|
6 |
<head> |
|
|
7 |
<meta http-equiv="X-UA-Compatible" content="IE=Edge" /> |
|
|
8 |
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> |
|
|
9 |
<title>Maui Utilities — 0.1 documentation</title> |
|
|
10 |
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" /> |
|
|
11 |
<link rel="stylesheet" href="_static/pygments.css" type="text/css" /> |
|
|
12 |
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script> |
|
|
13 |
<script type="text/javascript" src="_static/jquery.js"></script> |
|
|
14 |
<script type="text/javascript" src="_static/underscore.js"></script> |
|
|
15 |
<script type="text/javascript" src="_static/doctools.js"></script> |
|
|
16 |
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> |
|
|
17 |
<link rel="shortcut icon" href="_static/icons8-beach-30.png"/> |
|
|
18 |
<link rel="index" title="Index" href="genindex.html" /> |
|
|
19 |
<link rel="search" title="Search" href="search.html" /> |
|
|
20 |
<link rel="prev" title="The Maui Class" href="maui.html" /> |
|
|
21 |
|
|
|
22 |
<link rel="stylesheet" href="_static/custom.css" type="text/css" /> |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" /> |
|
|
26 |
|
|
|
27 |
</head><body> |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
<div class="document"> |
|
|
31 |
<div class="documentwrapper"> |
|
|
32 |
<div class="bodywrapper"> |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
<div class="body" role="main"> |
|
|
36 |
|
|
|
37 |
<div class="section" id="module-maui.utils"> |
|
|
38 |
<span id="maui-utilities"></span><h1>Maui Utilities<a class="headerlink" href="#module-maui.utils" title="Permalink to this headline">¶</a></h1> |
|
|
39 |
<p>The maui.utils model contains utility functions for multi-omics analysis |
|
|
40 |
using maui.</p> |
|
|
41 |
<dl class="function"> |
|
|
42 |
<dt id="maui.utils.compute_harrells_c"> |
|
|
43 |
<code class="descclassname">maui.utils.</code><code class="descname">compute_harrells_c</code><span class="sig-paren">(</span><em>z, survival, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#compute_harrells_c"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.compute_harrells_c" title="Permalink to this definition">¶</a></dt> |
|
|
44 |
<dd><p>Compute’s Harrell’s c-Index for a Cox Proportional Hazards regression modeling |
|
|
45 |
survival by the latent factors in z.</p> |
|
|
46 |
<p>z: pd.DataFrame (n_samples, n_latent factors) |
|
|
47 |
survival: pd.DataFrame of survival information and relevant covariates</p> |
|
|
48 |
<blockquote> |
|
|
49 |
<div>(such as sex, age at diagnosis, or tumor stage)</div></blockquote> |
|
|
50 |
<dl class="docutils"> |
|
|
51 |
<dt>duration_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> containing the</dt> |
|
|
52 |
<dd>duration (time between diagnosis and death or last followup)</dd> |
|
|
53 |
<dt>observed_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> containing</dt> |
|
|
54 |
<dd>indicating whether time of death is known</dd> |
|
|
55 |
<dt>cox_penalties: penalty coefficient in Cox PH solver (see <code class="docutils literal notranslate"><span class="pre">lifelines.CoxPHFitter</span></code>)</dt> |
|
|
56 |
<dd>to try. Returns the best c given by the different penalties |
|
|
57 |
(by cross-validation)</dd> |
|
|
58 |
</dl> |
|
|
59 |
<p>cv_folds: number of cross-validation folds to compute C</p> |
|
|
60 |
<dl class="docutils"> |
|
|
61 |
<dt>cs: array, Harrell’s c-Index, an auc-like metric for survival prediction accuracy.</dt> |
|
|
62 |
<dd>one value per cv_fold</dd> |
|
|
63 |
</dl> |
|
|
64 |
</dd></dl> |
|
|
65 |
|
|
|
66 |
<dl class="function"> |
|
|
67 |
<dt id="maui.utils.compute_roc"> |
|
|
68 |
<code class="descclassname">maui.utils.</code><code class="descname">compute_roc</code><span class="sig-paren">(</span><em>z</em>, <em>y</em>, <em>classifier=LinearSVC(C=0.001</em>, <em>class_weight=None</em>, <em>dual=True</em>, <em>fit_intercept=True</em>, <em>intercept_scaling=1</em>, <em>loss='squared_hinge'</em>, <em>max_iter=1000</em>, <em>multi_class='ovr'</em>, <em>penalty='l2'</em>, <em>random_state=None</em>, <em>tol=0.0001</em>, <em>verbose=0)</em>, <em>cv_folds=10</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#compute_roc"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.compute_roc" title="Permalink to this definition">¶</a></dt> |
|
|
69 |
<dd><p>Compute the ROC (false positive rate, true positive rate) using cross-validation.</p> |
|
|
70 |
<p>z: DataFrame (n_samples, n_latent_factors) of latent factor values |
|
|
71 |
y: Series (n_samples,) of ground-truth labels to try to predict |
|
|
72 |
classifier: Classifier object to use, default <code class="docutils literal notranslate"><span class="pre">LinearSVC(C=.001)</span></code></p> |
|
|
73 |
<dl class="docutils"> |
|
|
74 |
<dt>roc_curves: dict, one key per class as well as “mean”, each value is a dataframe</dt> |
|
|
75 |
<dd>containing the tpr (true positive rate) and fpr (falce positive rate) |
|
|
76 |
defining that class (or the mean) ROC.</dd> |
|
|
77 |
</dl> |
|
|
78 |
</dd></dl> |
|
|
79 |
|
|
|
80 |
<dl class="function"> |
|
|
81 |
<dt id="maui.utils.correlate_factors_and_features"> |
|
|
82 |
<code class="descclassname">maui.utils.</code><code class="descname">correlate_factors_and_features</code><span class="sig-paren">(</span><em>z</em>, <em>concatenated_data</em>, <em>pval_threshold=0.001</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#correlate_factors_and_features"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.correlate_factors_and_features" title="Permalink to this definition">¶</a></dt> |
|
|
83 |
<dd><p>Compute pearson correlation of latent factors with input features.</p> |
|
|
84 |
<p>z: (n_samples, n_factors) DataFrame of latent factor values, output of maui model |
|
|
85 |
concatenated_data: (n_samples, n_features) DataFrame of concatenated multi-omics data</p> |
|
|
86 |
<dl class="docutils"> |
|
|
87 |
<dt>feature_s: DataFrame (n_features, n_latent_factors)</dt> |
|
|
88 |
<dd>Latent factors representation of the data X.</dd> |
|
|
89 |
</dl> |
|
|
90 |
</dd></dl> |
|
|
91 |
|
|
|
92 |
<dl class="function"> |
|
|
93 |
<dt id="maui.utils.estimate_kaplan_meier"> |
|
|
94 |
<code class="descclassname">maui.utils.</code><code class="descname">estimate_kaplan_meier</code><span class="sig-paren">(</span><em>y</em>, <em>survival</em>, <em>duration_column='duration'</em>, <em>observed_column='observed'</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#estimate_kaplan_meier"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.estimate_kaplan_meier" title="Permalink to this definition">¶</a></dt> |
|
|
95 |
<dd><p>Estimate survival curves for groups defined in y based on survival data in <code class="docutils literal notranslate"><span class="pre">survival</span></code></p> |
|
|
96 |
<dl class="docutils"> |
|
|
97 |
<dt>y: pd.Series, groups (clusters, subtypes). the index is</dt> |
|
|
98 |
<dd>the sample names</dd> |
|
|
99 |
<dt>survival: pd.DataFrame with the same index as y, with columns for</dt> |
|
|
100 |
<dd>the duration (survival time for each patient) and whether |
|
|
101 |
or not the death was observed. If the death was not |
|
|
102 |
observed (sensored), the duration is the time of the last |
|
|
103 |
followup.</dd> |
|
|
104 |
</dl> |
|
|
105 |
<p>duration_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> with the duration |
|
|
106 |
observed_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> with True/False values</p> |
|
|
107 |
<blockquote> |
|
|
108 |
<div>for whether death was observed or not</div></blockquote> |
|
|
109 |
<dl class="docutils"> |
|
|
110 |
<dt>km_estimates: pd.DataFrame, index is the timeline, columns are survival</dt> |
|
|
111 |
<dd>functions (estimated by Kaplan-Meier) for each class, as |
|
|
112 |
defined in <code class="docutils literal notranslate"><span class="pre">y</span></code>.</dd> |
|
|
113 |
</dl> |
|
|
114 |
</dd></dl> |
|
|
115 |
|
|
|
116 |
<dl class="function"> |
|
|
117 |
<dt id="maui.utils.filter_factors_by_r2"> |
|
|
118 |
<code class="descclassname">maui.utils.</code><code class="descname">filter_factors_by_r2</code><span class="sig-paren">(</span><em>z</em>, <em>x</em>, <em>threshold=0.02</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#filter_factors_by_r2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.filter_factors_by_r2" title="Permalink to this definition">¶</a></dt> |
|
|
119 |
<dd><p>Filter latent factors by the R^2 of a linear model predicting features x |
|
|
120 |
from latent factors z.</p> |
|
|
121 |
<p>z: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model |
|
|
122 |
x: (n_samples, n_features) DataFrame of concatenated multi-omics data</p> |
|
|
123 |
<dl class="docutils"> |
|
|
124 |
<dt>z_filtered: (n_samples, n_factors) DataFrame of latent factor values,</dt> |
|
|
125 |
<dd>with only those columns from the input <cite>z</cite> which have an R^2 |
|
|
126 |
above the threshold when using that column as an input |
|
|
127 |
to a linear model predicting <cite>x</cite>.</dd> |
|
|
128 |
</dl> |
|
|
129 |
</dd></dl> |
|
|
130 |
|
|
|
131 |
<dl class="function"> |
|
|
132 |
<dt id="maui.utils.map_factors_to_feaures_using_linear_models"> |
|
|
133 |
<code class="descclassname">maui.utils.</code><code class="descname">map_factors_to_feaures_using_linear_models</code><span class="sig-paren">(</span><em>z</em>, <em>x</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#map_factors_to_feaures_using_linear_models"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.map_factors_to_feaures_using_linear_models" title="Permalink to this definition">¶</a></dt> |
|
|
134 |
<dd><p>Get feature <-> latent factors mapping from linear models. |
|
|
135 |
Runs one univariate (multi-output) linear model per latent factor in <cite>z</cite>, |
|
|
136 |
predicting the values of the features <cite>x</cite>, in order to get weights |
|
|
137 |
between inputs and outputs.</p> |
|
|
138 |
<p>z: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model |
|
|
139 |
x: (n_samples, n_features) DataFrame of concatenated multi-omics data</p> |
|
|
140 |
<dl class="docutils"> |
|
|
141 |
<dt>W: (n_features, n_latent_factors) DataFrame</dt> |
|
|
142 |
<dd>w_{ij} is the coefficient associated with feature <cite>i</cite> in a linear model |
|
|
143 |
predicting it from latent factor <cite>j</cite>.</dd> |
|
|
144 |
</dl> |
|
|
145 |
</dd></dl> |
|
|
146 |
|
|
|
147 |
<dl class="function"> |
|
|
148 |
<dt id="maui.utils.merge_factors"> |
|
|
149 |
<code class="descclassname">maui.utils.</code><code class="descname">merge_factors</code><span class="sig-paren">(</span><em>z</em>, <em>l=None</em>, <em>threshold=0.17</em>, <em>merge_fn=<function mean></em>, <em>metric='correlation'</em>, <em>linkage='single'</em>, <em>plot_dendro=True</em>, <em>plot_dendro_ax=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#merge_factors"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.merge_factors" title="Permalink to this definition">¶</a></dt> |
|
|
150 |
<dd><p>Merge latent factors in <cite>z</cite> which form clusters, as defined by hierarchical |
|
|
151 |
clustering where a cluster is formed by cutting at a pre-set threshold, i.e. |
|
|
152 |
merge factors if their distance to one-another is below <cite>threshold</cite>.</p> |
|
|
153 |
<p>z: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model |
|
|
154 |
metric: Distance metric to merge factors by, one which is supported by</p> |
|
|
155 |
<blockquote> |
|
|
156 |
<div><code class="xref py py-func docutils literal notranslate"><span class="pre">scipy.spatial.distance.pdist()</span></code></div></blockquote> |
|
|
157 |
<dl class="docutils"> |
|
|
158 |
<dt>linkage: The kind of linkage to form hierarchical clustering, one which is</dt> |
|
|
159 |
<dd>supported by <code class="xref py py-func docutils literal notranslate"><span class="pre">scipy.cluster.hierarchy.linkage()</span></code></dd> |
|
|
160 |
<dt>l: As an alternative to supplying <cite>metric</cite> and <cite>linkage</cite>, supply a</dt> |
|
|
161 |
<dd>linkage matrix of your own choice, such as one computed by |
|
|
162 |
<code class="xref py py-func docutils literal notranslate"><span class="pre">scipy.cluster.hierarchy.linkage()</span></code></dd> |
|
|
163 |
<dt>threshold: The distance threshold. latent factors with similarity below the</dt> |
|
|
164 |
<dd>threshold will be merged to form single latent facator</dd> |
|
|
165 |
<dt>merge_fn: A function which will be used to merge latent factors. The default</dt> |
|
|
166 |
<dd>is <code class="xref py py-func docutils literal notranslate"><span class="pre">numpy.mean()</span></code>, i.e. the newly formed (merged) latent factor |
|
|
167 |
will be the mean of the merged ones. Supply any function here which |
|
|
168 |
has the same interface, i.e. takes a matrix and an axis.</dd> |
|
|
169 |
<dt>plot_dendro: Boolean. If True, the function will plot a dendrogram showing</dt> |
|
|
170 |
<dd>which latent factors are merged and the threshold.</dd> |
|
|
171 |
</dl> |
|
|
172 |
</dd></dl> |
|
|
173 |
|
|
|
174 |
<dl class="function"> |
|
|
175 |
<dt id="maui.utils.multivariate_logrank_test"> |
|
|
176 |
<code class="descclassname">maui.utils.</code><code class="descname">multivariate_logrank_test</code><span class="sig-paren">(</span><em>y</em>, <em>survival</em>, <em>duration_column='duration'</em>, <em>observed_column='observed'</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#multivariate_logrank_test"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.multivariate_logrank_test" title="Permalink to this definition">¶</a></dt> |
|
|
177 |
<dd><p>Compute the multivariate log-rank test for differential survival |
|
|
178 |
among the groups defined by <code class="docutils literal notranslate"><span class="pre">y</span></code> in the survival data in <code class="docutils literal notranslate"><span class="pre">survival</span></code>, |
|
|
179 |
under the null-hypothesis that all groups have the same survival function |
|
|
180 |
(i.e. test whether at least one group has different survival rates)</p> |
|
|
181 |
<dl class="docutils"> |
|
|
182 |
<dt>y: pd.Series, groups (clusters, subtypes). the index is</dt> |
|
|
183 |
<dd>the sample names</dd> |
|
|
184 |
<dt>survival: pd.DataFrame with the same index as y, with columns for</dt> |
|
|
185 |
<dd>the duration (survival time for each patient) and whether |
|
|
186 |
or not the death was observed. If the death was not |
|
|
187 |
observed (sensored), the duration is the time of the last |
|
|
188 |
followup.</dd> |
|
|
189 |
</dl> |
|
|
190 |
<p>duration_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> with the duration |
|
|
191 |
observed_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> with True/False values</p> |
|
|
192 |
<blockquote> |
|
|
193 |
<div>for whether death was observed or not</div></blockquote> |
|
|
194 |
<p>test_statistic: the test statistic (chi-square) |
|
|
195 |
p_value: the associated p_value</p> |
|
|
196 |
</dd></dl> |
|
|
197 |
|
|
|
198 |
<dl class="function"> |
|
|
199 |
<dt id="maui.utils.scale"> |
|
|
200 |
<code class="descclassname">maui.utils.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>df</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#scale"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.scale" title="Permalink to this definition">¶</a></dt> |
|
|
201 |
<dd><p>Scale and center data</p> |
|
|
202 |
<p>df: pd.DataFrame (n_features, n_samples) non-scaled data</p> |
|
|
203 |
<p>scaled: pd.DataFrame (n_features, n_samples) scaled data</p> |
|
|
204 |
</dd></dl> |
|
|
205 |
|
|
|
206 |
<dl class="function"> |
|
|
207 |
<dt id="maui.utils.select_clinical_factors"> |
|
|
208 |
<code class="descclassname">maui.utils.</code><code class="descname">select_clinical_factors</code><span class="sig-paren">(</span><em>z</em>, <em>survival</em>, <em>duration_column='duration'</em>, <em>observed_column='observed'</em>, <em>alpha=0.05</em>, <em>cox_penalizer=0</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/maui/utils.html#select_clinical_factors"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#maui.utils.select_clinical_factors" title="Permalink to this definition">¶</a></dt> |
|
|
209 |
<dd><p>Select latent factors which are predictive of survival. This is |
|
|
210 |
accomplished by fitting a Cox Proportional Hazards (CPH) model to each |
|
|
211 |
latent factor, while controlling for known covariates, and only keeping |
|
|
212 |
those latent factors whose coefficient in the CPH is nonzero (adjusted |
|
|
213 |
p-value < alpha).</p> |
|
|
214 |
<dl class="docutils"> |
|
|
215 |
<dt>survival: pd.DataFrame of survival information and relevant covariates</dt> |
|
|
216 |
<dd>(such as sex, age at diagnosis, or tumor stage)</dd> |
|
|
217 |
<dt>duration_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> containing the</dt> |
|
|
218 |
<dd>duration (time between diagnosis and death or last followup)</dd> |
|
|
219 |
<dt>observed_column: the name of the column in <code class="docutils literal notranslate"><span class="pre">survival</span></code> containing</dt> |
|
|
220 |
<dd>indicating whether time of death is known</dd> |
|
|
221 |
<dt>alpha: threshold for p-value of CPH coefficients to call a latent</dt> |
|
|
222 |
<dd>factor clinically relevant (p < alpha)</dd> |
|
|
223 |
</dl> |
|
|
224 |
<p>cox_penalizer: penalty coefficient in Cox PH solver (see <code class="docutils literal notranslate"><span class="pre">lifelines.CoxPHFitter</span></code>)</p> |
|
|
225 |
<dl class="docutils"> |
|
|
226 |
<dt>z_clinical: pd.DataFrame, subset of the latent factors which have been</dt> |
|
|
227 |
<dd>determined to have clinical value (are individually predictive |
|
|
228 |
of survival, controlling for covariates)</dd> |
|
|
229 |
</dl> |
|
|
230 |
</dd></dl> |
|
|
231 |
|
|
|
232 |
</div> |
|
|
233 |
|
|
|
234 |
|
|
|
235 |
</div> |
|
|
236 |
|
|
|
237 |
</div> |
|
|
238 |
</div> |
|
|
239 |
<div class="sphinxsidebar" role="navigation" aria-label="main navigation"> |
|
|
240 |
<div class="sphinxsidebarwrapper"> |
|
|
241 |
<p class="logo"><a href="index.html"> |
|
|
242 |
<img class="logo" src="_static/hex-maui.png" alt="Logo"/> |
|
|
243 |
</a></p> |
|
|
244 |
<h1 class="logo"><a href="index.html"></a></h1> |
|
|
245 |
|
|
|
246 |
|
|
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
|
252 |
|
|
|
253 |
<h3>Navigation</h3> |
|
|
254 |
<ul class="current"> |
|
|
255 |
<li class="toctree-l1"><a class="reference internal" href="autoencoder-integration.html">Multi-modal Autoencoders</a></li> |
|
|
256 |
<li class="toctree-l1"><a class="reference internal" href="data-normalization.html">Data and Normalization</a></li> |
|
|
257 |
<li class="toctree-l1"><a class="reference internal" href="filtering-and-merging-latent-factors.html">Filtering and Merging latent factors</a></li> |
|
|
258 |
<li class="toctree-l1"><a class="reference internal" href="maui.html">The Maui Class</a></li> |
|
|
259 |
<li class="toctree-l1 current"><a class="current reference internal" href="#">Maui Utilities</a></li> |
|
|
260 |
</ul> |
|
|
261 |
|
|
|
262 |
<div class="relations"> |
|
|
263 |
<h3>Related Topics</h3> |
|
|
264 |
<ul> |
|
|
265 |
<li><a href="index.html">Documentation overview</a><ul> |
|
|
266 |
<li>Previous: <a href="maui.html" title="previous chapter">The Maui Class</a></li> |
|
|
267 |
</ul></li> |
|
|
268 |
</ul> |
|
|
269 |
</div> |
|
|
270 |
<div id="searchbox" style="display: none" role="search"> |
|
|
271 |
<h3>Quick search</h3> |
|
|
272 |
<div class="searchformwrapper"> |
|
|
273 |
<form class="search" action="search.html" method="get"> |
|
|
274 |
<input type="text" name="q" /> |
|
|
275 |
<input type="submit" value="Go" /> |
|
|
276 |
<input type="hidden" name="check_keywords" value="yes" /> |
|
|
277 |
<input type="hidden" name="area" value="default" /> |
|
|
278 |
</form> |
|
|
279 |
</div> |
|
|
280 |
</div> |
|
|
281 |
<script type="text/javascript">$('#searchbox').show(0);</script> |
|
|
282 |
|
|
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
|
286 |
|
|
|
287 |
|
|
|
288 |
|
|
|
289 |
|
|
|
290 |
</div> |
|
|
291 |
</div> |
|
|
292 |
<div class="clearer"></div> |
|
|
293 |
</div> |
|
|
294 |
<div class="footer"> |
|
|
295 |
©2018, Jonathan Ronen, Altuna Akalin. |
|
|
296 |
|
|
|
297 |
| |
|
|
298 |
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.8.2</a> |
|
|
299 |
& <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.12</a> |
|
|
300 |
|
|
|
301 |
| |
|
|
302 |
<a href="_sources/utils.rst.txt" |
|
|
303 |
rel="nofollow">Page source</a> |
|
|
304 |
</div> |
|
|
305 |
|
|
|
306 |
|
|
|
307 |
|
|
|
308 |
|
|
|
309 |
</body> |
|
|
310 |
</html> |