305 lines (305 with data), 71.4 kB
ÇĽ îdocutils.nodesöîdocumentöôö)üö}ö(î rawsourceöî öîchildrenö]öh îsectionöôö)üö}ö(hhh]ö(h îtitleöôö)üö}ö(hîMaui Utilitiesöh]öh îTextöôöîMaui Utilitiesöůöüö}ö(hhîparentöhhhîsourceöNîlineöNubaî
attributesö}ö(îidsö]öîclassesö]öînamesö]öîdupnamesö]öîbackrefsö]öuîtagnameöhhhhhhî+/home/jona/work/phd/maui/maui/doc/utils.rstöhKubîsphinx.addnodesöîindexöôö)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(îsingleöîmaui.utils (module)öîmodule-maui.utilsöhNtöauh)h,hhhhhîC/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utilsöhKubh î paragraphöôö)üö}ö(hîTThe maui.utils model contains utility functions for multi-omics analysis
using maui.öh]öhîTThe maui.utils model contains utility functions for multi-omics analysis
using maui.öůöüö}ö(hhBhh@hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hîC/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utilsöhKhhhhubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î+compute_harrells_c() (in module maui.utils)öîmaui.utils.compute_harrells_cöhNtöauh)h,hhhhhNhNubh+îdescöôö)üö}ö(hhh]ö(h+îdesc_signatureöôö)üö}ö(hîĹcompute_harrells_c(z, survival, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5)öh]ö(h+îdesc_addnameöôö)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhhjhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öî xml:spaceöîpreserveöuh)hhhhdhhhîV/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.compute_harrells_cöhNubh+î desc_nameöôö)üö}ö(hîcompute_harrells_cöh]öhîcompute_harrells_cöůöüö}ö(hhhh}hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hhdhhhhzhNubh+îdesc_parameterlistöôö)üö}ö(hî}z, survival, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5öh]öh+îdesc_parameteröôö)üö}ö(hî}z, survival, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5öh]öhî}z, survival, duration_column='duration', observed_column='observed', cox_penalties=[0.1, 1, 10, 100, 1000, 10000], cv_folds=5öůöüö}ö(hhhhôhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhhŹhhhhzhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhhdhhhhzhNubh+îonlyöôö)üö}ö(hhh]öh+îpending_xreföôö)üö}ö(hhh]öh îinlineöôö)üö}ö(hhh]öhî[source]öůöüö}ö(hhhh│ubah}ö(h]öh!]öî
viewcode-linköah#]öh%]öh']öuh)h▒hh«ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîviewcodeöî refdomainöîstdöîrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöhîrefdocöîutilsöuh)hČhhęubah}ö(h]öh!]öh#]öh%]öh']öîexpröîhtmlöuh)hžhhdhhhNhNubeh}ö(h]öh[ah!]öh#]öh[ah%]öh']öîfirstöëîmoduleöî
maui.utilsöîclassöhîfullnameöhuh)hbhh_hhhhzhNubh+îdesc_contentöôö)üö}ö(hhh]ö(h?)üö}ö(hîsCompute's Harrell's c-Index for a Cox Proportional Hazards regression modeling
survival by the latent factors in z.öh]öhîwComputeÔÇÖs HarrellÔÇÖs c-Index for a Cox Proportional Hazards regression modeling
survival by the latent factors in z.öůöüö}ö(hhŰhhÚhhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hîV/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.compute_harrells_cöhKhhŠhhubh?)üö}ö(hîĆz: pd.DataFrame (n_samples, n_latent factors)
survival: pd.DataFrame of survival information and relevant covariatesöh]öhîĆz: pd.DataFrame (n_samples, n_latent factors)
survival: pd.DataFrame of survival information and relevant covariatesöůöüö}ö(hh˙hh°hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhhŠhhubh îblock_quoteöôö)üö}ö(hhh]öh?)üö}ö(hî/(such as sex, age at diagnosis, or tumor stage)öh]öhî/(such as sex, age at diagnosis, or tumor stage)öůöüö}ö(hj
hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhŠhhhh¸hNubh îdefinition_listöôö)üö}ö(hhh]ö(h îdefinition_list_itemöôö)üö}ö(hîćduration_column: the name of the column in ``survival`` containing the
duration (time between diagnosis and death or last followup)öh]ö(h îtermöôö)üö}ö(hîIduration_column: the name of the column in ``survival`` containing theöh]ö(hî.duration_column: the name of the column in öůöüö}ö(hî.duration_column: the name of the column in öhj, ubh îliteralöôö)üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj7 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hj, ubhî containing theöůöüö}ö(hî containing theöhj, ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hh¸hK hj& ubh î
definitionöôö)üö}ö(hhh]öh?)üö}ö(hî<duration (time between diagnosis and death or last followup)öh]öhî<duration (time between diagnosis and death or last followup)öůöüö}ö(hjW hjU ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hK
hjR ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj& ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hh¸hK hj! ubj% )üö}ö(hîoobserved_column: the name of the column in ``survival`` containing
indicating whether time of death is knownöh]ö(j+ )üö}ö(hîEobserved_column: the name of the column in ``survival`` containingöh]ö(hî.observed_column: the name of the column in öůöüö}ö(hî.observed_column: the name of the column in öhjs ubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj| ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjs ubhî containingöůöüö}ö(hî containingöhjs ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hh¸hKhjo ubjQ )üö}ö(hhh]öh?)üö}ö(hî)indicating whether time of death is knownöh]öhî)indicating whether time of death is knownöůöüö}ö(hjÜ hjś ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhjĽ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjo ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hh¸hKhj! hhubj% )üö}ö(hî¬cox_penalties: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)
to try. Returns the best c given by the different penalties
(by cross-validation)öh]ö(j+ )üö}ö(hîXcox_penalties: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)öh]ö(hî>cox_penalties: penalty coefficient in Cox PH solver (see öůöüö}ö(hî>cox_penalties: penalty coefficient in Cox PH solver (see öhj ubj6 )üö}ö(hî``lifelines.CoxPHFitter``öh]öhîlifelines.CoxPHFitteröůöüö}ö(hhhj┐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hj ubhî)öůöüö}ö(hî)öhj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hh¸hKhj▓ ubjQ )üö}ö(hhh]öh?)üö}ö(hîQto try. Returns the best c given by the different penalties
(by cross-validation)öh]öhîQto try. Returns the best c given by the different penalties
(by cross-validation)öůöüö}ö(hjŢ hj█ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhjě ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj▓ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hh¸hKhj! hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hhŠhhhh¸hNubh?)üö}ö(hîAcv_folds: number of cross-validation folds to compute Cöh]öhîAcv_folds: number of cross-validation folds to compute Cöůöüö}ö(hjř hjű hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhhŠhhubj )üö}ö(hhh]öj% )üö}ö(hîhcs: array, Harrell's c-Index, an auc-like metric for survival prediction accuracy.
one value per cv_foldöh]ö(j+ )üö}ö(hîRcs: array, Harrell's c-Index, an auc-like metric for survival prediction accuracy.öh]öhîTcs: array, HarrellÔÇÖs c-Index, an auc-like metric for survival prediction accuracy.öůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hh¸hKhj ubjQ )üö}ö(hhh]öh?)üö}ö(hîone value per cv_foldöh]öhîone value per cv_foldöůöüö}ö(hj# hj! ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hh¸hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hh¸hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hhŠhhhh¸hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhh_hhhhzhNubeh}ö(h]öh!]öh#]öh%]öh']öîdomainöîpyöîobjtypeöîfunctionöîdesctypeöjP înoindexöëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î$compute_roc() (in module maui.utils)öîmaui.utils.compute_rocöhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hX compute_roc(z, y, classifier=LinearSVC(C=0.001, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0), cv_folds=10)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhjh hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhjd hhhîO/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.compute_rocöhNubh|)üö}ö(hîcompute_rocöh]öhîcompute_rocöůöüö}ö(hhhjw hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hjd hhhjv hNubhî)üö}ö(hîšz, y, classifier=LinearSVC(C=0.001, class_weight=None, dual=True, fit_intercept=True, intercept_scaling=1, loss='squared_hinge', max_iter=1000, multi_class='ovr', penalty='l2', random_state=None, tol=0.0001, verbose=0), cv_folds=10öh]ö(hĺ)üö}ö(hîzöh]öhîzöůöüö}ö(hhhjë ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîyöh]öhîyöůöüö}ö(hhhjŚ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîclassifier=LinearSVC(C=0.001öh]öhîclassifier=LinearSVC(C=0.001öůöüö}ö(hhhją ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîclass_weight=Noneöh]öhîclass_weight=Noneöůöüö}ö(hhhj│ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hî dual=Trueöh]öhî dual=Trueöůöüö}ö(hhhj┴ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîfit_intercept=Trueöh]öhîfit_intercept=Trueöůöüö}ö(hhhj¤ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîintercept_scaling=1öh]öhîintercept_scaling=1öůöüö}ö(hhhjŢ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîloss='squared_hinge'öh]öhîloss='squared_hinge'öůöüö}ö(hhhjŰ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hî
max_iter=1000öh]öhî
max_iter=1000öůöüö}ö(hhhj¨ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîmulti_class='ovr'öh]öhîmulti_class='ovr'öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîpenalty='l2'öh]öhîpenalty='l2'öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîrandom_state=Noneöh]öhîrandom_state=Noneöůöüö}ö(hhhj# ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hî
tol=0.0001öh]öhî
tol=0.0001öůöüö}ö(hhhj1 ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hî
verbose=0)öh]öhî
verbose=0)öůöüö}ö(hhhj? ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubhĺ)üö}ö(hîcv_folds=10öh]öhîcv_folds=10öůöüö}ö(hhhjM ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjů ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhjd hhhjv hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjg ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjd ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöjy îrefdocöhđuh)hČhja ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhjd hhhNhNubeh}ö(h]öj_ ah!]öh#]öj_ ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃjy uh)hbhja hhhjv hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîQCompute the ROC (false positive rate, true positive rate) using cross-validation.öh]öhîQCompute the ROC (false positive rate, true positive rate) using cross-validation.öůöüö}ö(hjö hjĺ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hîO/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.compute_rocöhKhjĆ hhubh?)üö}ö(hîěz: DataFrame (n_samples, n_latent_factors) of latent factor values
y: Series (n_samples,) of ground-truth labels to try to predict
classifier: Classifier object to use, default ``LinearSVC(C=.001)``öh]ö(hî├z: DataFrame (n_samples, n_latent_factors) of latent factor values
y: Series (n_samples,) of ground-truth labels to try to predict
classifier: Classifier object to use, default öůöüö}ö(hî├z: DataFrame (n_samples, n_latent_factors) of latent factor values
y: Series (n_samples,) of ground-truth labels to try to predict
classifier: Classifier object to use, default öhjí hhhNhNubj6 )üö}ö(hî``LinearSVC(C=.001)``öh]öhîLinearSVC(C=.001)öůöüö}ö(hhhj¬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjí ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hjá hKhjĆ hhubj )üö}ö(hhh]öj% )üö}ö(hîŻroc_curves: dict, one key per class as well as "mean", each value is a dataframe
containing the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öh]ö(j+ )üö}ö(hîProc_curves: dict, one key per class as well as "mean", each value is a dataframeöh]öhîTroc_curves: dict, one key per class as well as ÔÇťmeanÔÇŁ, each value is a dataframeöůöüö}ö(hjă hj┼ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjá hKhj┴ ubjQ )üö}ö(hhh]öh?)üö}ö(hîlcontaining the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öh]öhîlcontaining the tpr (true positive rate) and fpr (falce positive rate)
defining that class (or the mean) ROC.öůöüö}ö(hjě hjÍ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjá hKhjË ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj┴ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjá hKhjż ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjĆ hhhjá hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhja hhhjv hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ j jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î7correlate_factors_and_features() (in module maui.utils)öî)maui.utils.correlate_factors_and_featuresöhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hîJcorrelate_factors_and_features(z, concatenated_data, pval_threshold=0.001)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj hhhîb/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.correlate_factors_and_featuresöhNubh|)üö}ö(hîcorrelate_factors_and_featuresöh]öhîcorrelate_factors_and_featuresöůöüö}ö(hhhj( hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj hhhj' hNubhî)üö}ö(hî*z, concatenated_data, pval_threshold=0.001öh]ö(hĺ)üö}ö(hjő h]öhîzöůöüö}ö(hhhj: ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj6 ubhĺ)üö}ö(hîconcatenated_dataöh]öhîconcatenated_dataöůöüö}ö(hhhjG ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj6 ubhĺ)üö}ö(hîpval_threshold=0.001öh]öhîpval_threshold=0.001öůöüö}ö(hhhjU ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj6 ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj hhhj' hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjo ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjl ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöj* îrefdocöhđuh)hČhji ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃj* uh)hbhj hhhj' hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîBCompute pearson correlation of latent factors with input features.öh]öhîBCompute pearson correlation of latent factors with input features.öůöüö}ö(hjť hjÜ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hîb/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.correlate_factors_and_featuresöhKhjŚ hhubh?)üö}ö(hî╣z: (n_samples, n_factors) DataFrame of latent factor values, output of maui model
concatenated_data: (n_samples, n_features) DataFrame of concatenated multi-omics dataöh]öhî╣z: (n_samples, n_factors) DataFrame of latent factor values, output of maui model
concatenated_data: (n_samples, n_features) DataFrame of concatenated multi-omics dataöůöüö}ö(hjź hję hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjĘ hKhjŚ hhubj )üö}ö(hhh]öj% )üö}ö(hîafeature_s: DataFrame (n_features, n_latent_factors)
Latent factors representation of the data X.öh]ö(j+ )üö}ö(hî4feature_s: DataFrame (n_features, n_latent_factors)öh]öhî4feature_s: DataFrame (n_features, n_latent_factors)öůöüö}ö(hj└ hjż ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjĘ hK
hj║ ubjQ )üö}ö(hhh]öh?)üö}ö(hî,Latent factors representation of the data X.öh]öhî,Latent factors representation of the data X.öůöüö}ö(hjĐ hj¤ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjĘ hKhj╠ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj║ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjĘ hK
hjĚ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjŚ hhhjĘ hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj hhhj' hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ jŘ jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î.estimate_kaplan_meier() (in module maui.utils)öî maui.utils.estimate_kaplan_meieröhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hîZestimate_kaplan_meier(y, survival, duration_column='duration', observed_column='observed')öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj hhhîY/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.estimate_kaplan_meieröhNubh|)üö}ö(hîestimate_kaplan_meieröh]öhîestimate_kaplan_meieröůöüö}ö(hhhj! hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj hhhj hNubhî)üö}ö(hîCy, survival, duration_column='duration', observed_column='observed'öh]ö(hĺ)üö}ö(hjÖ h]öhîyöůöüö}ö(hhhj3 ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj/ ubhĺ)üö}ö(hîsurvivalöh]öhîsurvivalöůöüö}ö(hhhj@ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj/ ubhĺ)üö}ö(hîduration_column='duration'öh]öhîduration_column='duration'öůöüö}ö(hhhjN ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj/ ubhĺ)üö}ö(hîobserved_column='observed'öh]öhîobserved_column='observed'öůöüö}ö(hhhj\ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj/ ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj hhhj hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjv ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjs ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöj# îrefdocöhđuh)hČhjp ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃj# uh)hbhj hhhj hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîWEstimate survival curves for groups defined in y based on survival data in ``survival``öh]ö(hîKEstimate survival curves for groups defined in y based on survival data in öůöüö}ö(hîKEstimate survival curves for groups defined in y based on survival data in öhjí hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj¬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjí ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hîY/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.estimate_kaplan_meieröhKhj× hhubj )üö}ö(hhh]ö(j% )üö}ö(hîYy: pd.Series, groups (clusters, subtypes). the index is
the sample namesöh]ö(j+ )üö}ö(hîHy: pd.Series, groups (clusters, subtypes). the index isöh]öhîHy: pd.Series, groups (clusters, subtypes). the index isöůöüö}ö(hj╚ hjĂ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjż hKhj┬ ubjQ )üö}ö(hhh]öh?)üö}ö(hîthe sample namesöh]öhîthe sample namesöůöüö}ö(hj┘ hjÎ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjż hKhjď ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj┬ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjż hKhj┐ ubj% )üö}ö(hîřsurvival: pd.DataFrame with the same index as y, with columns for
the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öh]ö(j+ )üö}ö(hîKsurvival: pd.DataFrame with the same index as y, with columns foröh]öhîKsurvival: pd.DataFrame with the same index as y, with columns foröůöüö}ö(hj¸ hj§ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjż hK
hj˝ ubjQ )üö}ö(hhh]öh?)üö}ö(hî▒the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öh]öhî▒the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öůöüö}ö(hj hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjż hKhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj˝ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjż hK
hj┐ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hj× hhhjż hNubh?)üö}ö(hîúduration_column: the name of the column in ``survival`` with the duration
observed_column: the name of the column in ``survival`` with True/False valuesöh]ö(hî3duration_column: the name of the column in öůöüö}ö(hî3duration_column: the name of the column in öhj& hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj/ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hj& ubhîA with the duration
observed_column: the name of the column in öůöüö}ö(hîA with the duration
observed_column: the name of the column in öhj& hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjB ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hj& ubhî with True/False valuesöůöüö}ö(hî with True/False valuesöhj& hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hjż hKhj× hhubj )üö}ö(hhh]öh?)üö}ö(hî%for whether death was observed or notöh]öhî%for whether death was observed or notöůöüö}ö(hj` hj^ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjż hKhj[ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj× hhhjż hNubj )üö}ö(hhh]öj% )üö}ö(hîśkm_estimates: pd.DataFrame, index is the timeline, columns are survival
functions (estimated by Kaplan-Meier) for each class, as
defined in ``y``.öh]ö(j+ )üö}ö(hîMkm_estimates: pd.DataFrame, index is the timeline, columns are survivalöh]öhîMkm_estimates: pd.DataFrame, index is the timeline, columns are survivalöůöüö}ö(hj{ hjy ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjż hKhju ubjQ )üö}ö(hhh]öh?)üö}ö(hîJfunctions (estimated by Kaplan-Meier) for each class, as
defined in ``y``.öh]ö(hîDfunctions (estimated by Kaplan-Meier) for each class, as
defined in öůöüö}ö(hîDfunctions (estimated by Kaplan-Meier) for each class, as
defined in öhjŐ ubj6 )üö}ö(hî``y``öh]öhîyöůöüö}ö(hhhjô ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjŐ ubhî.öůöüö}ö(hî.öhjŐ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hjż hKhjç ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hju ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjż hKhjr ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj× hhhjż hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj hhhj hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ j╦ jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î-filter_factors_by_r2() (in module maui.utils)öîmaui.utils.filter_factors_by_r2öhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hî*filter_factors_by_r2(z, x, threshold=0.02)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhjß hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhjŢ hhhîX/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.filter_factors_by_r2öhNubh|)üö}ö(hîfilter_factors_by_r2öh]öhîfilter_factors_by_r2öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hjŢ hhhj´ hNubhî)üö}ö(hîz, x, threshold=0.02öh]ö(hĺ)üö}ö(hjő h]öhîzöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj■ ubhĺ)üö}ö(hîxöh]öhîxöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj■ ubhĺ)üö}ö(hîthreshold=0.02öh]öhîthreshold=0.02öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj■ ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhjŢ hhhj´ hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj7 ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hj4 ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöj˛ îrefdocöhđuh)hČhj1 ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhjŢ hhhNhNubeh}ö(h]öjě ah!]öh#]öjě ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃj˛ uh)hbhj┌ hhhj´ hNubhň)üö}ö(hhh]ö(h?)üö}ö(hî_Filter latent factors by the R^2 of a linear model predicting features x
from latent factors z.öh]öhî_Filter latent factors by the R^2 of a linear model predicting features x
from latent factors z.öůöüö}ö(hjd hjb hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hîX/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.filter_factors_by_r2öhKhj_ hhubh?)üö}ö(hîŤz: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
x: (n_samples, n_features) DataFrame of concatenated multi-omics dataöh]öhîŤz: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
x: (n_samples, n_features) DataFrame of concatenated multi-omics dataöůöüö}ö(hjs hjq hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjp hKhj_ hhubj )üö}ö(hhh]öj% )üö}ö(hî█z_filtered: (n_samples, n_factors) DataFrame of latent factor values,
with only those columns from the input `z` which have an R^2
above the threshold when using that column as an input
to a linear model predicting `x`.öh]ö(j+ )üö}ö(hîEz_filtered: (n_samples, n_factors) DataFrame of latent factor values,öh]öhîEz_filtered: (n_samples, n_factors) DataFrame of latent factor values,öůöüö}ö(hjł hjć ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hjp hK
hjé ubjQ )üö}ö(hhh]öh?)üö}ö(hîĽwith only those columns from the input `z` which have an R^2
above the threshold when using that column as an input
to a linear model predicting `x`.öh]ö(hî'with only those columns from the input öůöüö}ö(hî'with only those columns from the input öhjŚ ubh îtitle_referenceöôö)üö}ö(hî`z`öh]öhîzöůöüö}ö(hhhjó ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjŚ ubhîg which have an R^2
above the threshold when using that column as an input
to a linear model predicting öůöüö}ö(hîg which have an R^2
above the threshold when using that column as an input
to a linear model predicting öhjŚ ubjí )üö}ö(hî`x`öh]öhîxöůöüö}ö(hhhjÁ ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjŚ ubhî.öůöüö}ö(hją hjŚ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hjp hKhjö ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjé ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hjp hK
hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj_ hhhjp hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj┌ hhhj´ hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ jý jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îCmap_factors_to_feaures_using_linear_models() (in module maui.utils)öî5maui.utils.map_factors_to_feaures_using_linear_modelsöhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hî0map_factors_to_feaures_using_linear_models(z, x)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj■ hhhîn/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.map_factors_to_feaures_using_linear_modelsöhNubh|)üö}ö(hî*map_factors_to_feaures_using_linear_modelsöh]öhî*map_factors_to_feaures_using_linear_modelsöůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj■ hhhj hNubhî)üö}ö(hîz, xöh]ö(hĺ)üö}ö(hjő h]öhîzöůöüö}ö(hhhj# ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj ubhĺ)üö}ö(hj h]öhîxöůöüö}ö(hhhj0 ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj■ hhhj hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjI ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjF ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöj îrefdocöhđuh)hČhjC ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj■ hhhNhNubeh}ö(h]öj¨ ah!]öh#]öj¨ ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃj uh)hbhjű hhhj hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîŃGet feature <-> latent factors mapping from linear models.
Runs one univariate (multi-output) linear model per latent factor in `z`,
predicting the values of the features `x`, in order to get weights
between inputs and outputs.öh]ö(hîÇGet feature <-> latent factors mapping from linear models.
Runs one univariate (multi-output) linear model per latent factor in öůöüö}ö(hîÇGet feature <-> latent factors mapping from linear models.
Runs one univariate (multi-output) linear model per latent factor in öhjt hhhNhNubjí )üö}ö(hî`z`öh]öhîzöůöüö}ö(hhhj} ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjt ubhî(,
predicting the values of the features öůöüö}ö(hî(,
predicting the values of the features öhjt hhhNhNubjí )üö}ö(hî`x`öh]öhîxöůöüö}ö(hhhjÉ ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjt ubhî5, in order to get weights
between inputs and outputs.öůöüö}ö(hî5, in order to get weights
between inputs and outputs.öhjt hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hîn/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.map_factors_to_feaures_using_linear_modelsöhKhjq hhubh?)üö}ö(hîŤz: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
x: (n_samples, n_features) DataFrame of concatenated multi-omics dataöh]öhîŤz: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
x: (n_samples, n_features) DataFrame of concatenated multi-omics dataöůöüö}ö(hjČ hj¬ hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hję hKhjq hhubj )üö}ö(hhh]öj% )üö}ö(hîÜW: (n_features, n_latent_factors) DataFrame
w_{ij} is the coefficient associated with feature `i` in a linear model
predicting it from latent factor `j`.öh]ö(j+ )üö}ö(hî,W: (n_features, n_latent_factors) DataFrameöh]öhî,W: (n_features, n_latent_factors) DataFrameöůöüö}ö(hj┴ hj┐ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hję hKhj╗ ubjQ )üö}ö(hhh]öh?)üö}ö(hîmw_{ij} is the coefficient associated with feature `i` in a linear model
predicting it from latent factor `j`.öh]ö(hî2w_{ij} is the coefficient associated with feature öůöüö}ö(hî2w_{ij} is the coefficient associated with feature öhjđ ubjí )üö}ö(hî`i`öh]öhîiöůöüö}ö(hhhj┘ ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjđ ubhî4 in a linear model
predicting it from latent factor öůöüö}ö(hî4 in a linear model
predicting it from latent factor öhjđ ubjí )üö}ö(hî`j`öh]öhîjöůöüö}ö(hhhjý ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hjđ ubhî.öůöüö}ö(hją hjđ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hję hKhj═ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj╗ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hję hKhjŞ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjq hhhję hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhjű hhhj hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ j# jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î&merge_factors() (in module maui.utils)öîmaui.utils.merge_factorsöhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hîĹmerge_factors(z, l=None, threshold=0.17, merge_fn=<function mean>, metric='correlation', linkage='single', plot_dendro=True, plot_dendro_ax=None)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj9 hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj5 hhhîQ/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.merge_factorsöhNubh|)üö}ö(hî
merge_factorsöh]öhî
merge_factorsöůöüö}ö(hhhjH hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj5 hhhjG hNubhî)üö}ö(hîéz, l=None, threshold=0.17, merge_fn=<function mean>, metric='correlation', linkage='single', plot_dendro=True, plot_dendro_ax=Noneöh]ö(hĺ)üö}ö(hjő h]öhîzöůöüö}ö(hhhjZ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîl=Noneöh]öhîl=Noneöůöüö}ö(hhhjg ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîthreshold=0.17öh]öhîthreshold=0.17öůöüö}ö(hhhju ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîmerge_fn=<function mean>öh]öhîmerge_fn=<function mean>öůöüö}ö(hhhjâ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîmetric='correlation'öh]öhîmetric='correlation'öůöüö}ö(hhhjĹ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîlinkage='single'öh]öhîlinkage='single'öůöüö}ö(hhhjč ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîplot_dendro=Trueöh]öhîplot_dendro=Trueöůöüö}ö(hhhjş ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubhĺ)üö}ö(hîplot_dendro_ax=Noneöh]öhîplot_dendro_ax=Noneöůöüö}ö(hhhj╗ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjV ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj5 hhhjG hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhjŇ ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjĎ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöjJ îrefdocöhđuh)hČhj¤ ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj5 hhhNhNubeh}ö(h]öj0 ah!]öh#]öj0 ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃjJ uh)hbhj2 hhhjG hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîŢMerge latent factors in `z` which form clusters, as defined by hierarchical
clustering where a cluster is formed by cutting at a pre-set threshold, i.e.
merge factors if their distance to one-another is below `threshold`.öh]ö(hîMerge latent factors in öůöüö}ö(hîMerge latent factors in öhj
hhhNhNubjí )üö}ö(hî`z`öh]öhîzöůöüö}ö(hhhj
ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hj
ubhî which form clusters, as defined by hierarchical
clustering where a cluster is formed by cutting at a pre-set threshold, i.e.
merge factors if their distance to one-another is below öůöüö}ö(hî which form clusters, as defined by hierarchical
clustering where a cluster is formed by cutting at a pre-set threshold, i.e.
merge factors if their distance to one-another is below öhj
hhhNhNubjí )üö}ö(hî`threshold`öh]öhî thresholdöůöüö}ö(hhhj
ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hj
ubhî.öůöüö}ö(hją hj
hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hîQ/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.merge_factorsöhKhjř hhubh?)üö}ö(hî»z: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
metric: Distance metric to merge factors by, one which is supported byöh]öhî»z: (n_samples, n_factors) DataFrame of latent factor values, output of a maui model
metric: Distance metric to merge factors by, one which is supported byöůöüö}ö(hj7
hj5
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hKhjř hhubj )üö}ö(hhh]öh?)üö}ö(hî$:func:`scipy.spatial.distance.pdist`öh]öhş)üö}ö(hjH
h]öj6 )üö}ö(hjH
h]öhîscipy.spatial.distance.pdist()öůöüö}ö(hhhjM
ubah}ö(h]öh!]ö(îxreföîpyöîpy-funcöeh#]öh%]öh']öuh)j5 hjJ
ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjX
îrefexplicitöëî py:moduleöjŘ îpy:classöNî reftargetöîscipy.spatial.distance.pdistöîrefdocöhđîrefwarnöëuh)hČhj4
hK hjF
ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hK hjC
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjř hhhj4
hNubj )üö}ö(hhh]ö(j% )üö}ö(hîćlinkage: The kind of linkage to form hierarchical clustering, one which is
supported by :func:`scipy.cluster.hierarchy.linkage`öh]ö(j+ )üö}ö(hîQlinkage: The kind of linkage to form hierarchical clustering, one which isöh]öhîQlinkage: The kind of linkage to form hierarchical clustering, one which isöůöüö}ö(hjé
hjÇ
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj4
hK
hj|
ubjQ )üö}ö(hhh]öh?)üö}ö(hî4supported by :func:`scipy.cluster.hierarchy.linkage`öh]ö(hî
supported by öůöüö}ö(hî
supported by öhjĹ
ubhş)üö}ö(hî':func:`scipy.cluster.hierarchy.linkage`öh]öj6 )üö}ö(hjť
h]öhî!scipy.cluster.hierarchy.linkage()öůöüö}ö(hhhj×
ubah}ö(h]öh!]ö(jW
îpyöîpy-funcöeh#]öh%]öh']öuh)j5 hjÜ
ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjĘ
îrefexplicitöëjg
jŘ jh
Nji
îscipy.cluster.hierarchy.linkageöjk
hđjl
ëuh)hČhj4
hKhjĹ
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hKhjÄ
ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj|
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj4
hK
hjy
ubj% )üö}ö(hî▓l: As an alternative to supplying `metric` and `linkage`, supply a
linkage matrix of your own choice, such as one computed by
:func:`scipy.cluster.hierarchy.linkage`öh]ö(j+ )üö}ö(hîOl: As an alternative to supplying `metric` and `linkage`, supply aöh]ö(hî/l: As an alternative to supplying öůöüö}ö(hî/l: As an alternative to supplying öhj╬
ubjí )üö}ö(hî`metric`öh]öhîmetricöůöüö}ö(hhhjÎ
ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hj╬
ubhî and öůöüö}ö(hî and öhj╬
ubjí )üö}ö(hî `linkage`öh]öhîlinkageöůöüö}ö(hhhjŕ
ubah}ö(h]öh!]öh#]öh%]öh']öuh)já hj╬
ubhî
, supply aöůöüö}ö(hî
, supply aöhj╬
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hj4
hK
hj╩
ubjQ )üö}ö(hhh]öh?)üö}ö(hîblinkage matrix of your own choice, such as one computed by
:func:`scipy.cluster.hierarchy.linkage`öh]ö(hî;linkage matrix of your own choice, such as one computed by
öůöüö}ö(hî;linkage matrix of your own choice, such as one computed by
öhj ubhş)üö}ö(hî':func:`scipy.cluster.hierarchy.linkage`öh]öj6 )üö}ö(hj h]öhî!scipy.cluster.hierarchy.linkage()öůöüö}ö(hhhj ubah}ö(h]öh!]ö(jW
îpyöîpy-funcöeh#]öh%]öh']öuh)j5 hj ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöj îrefexplicitöëjg
jŘ jh
Nji
îscipy.cluster.hierarchy.linkageöjk
hđjl
ëuh)hČhj4
hK
hj ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hK
hj ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj╩
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj4
hK
hjy
hhubj% )üö}ö(hîçthreshold: The distance threshold. latent factors with similarity below the
threshold will be merged to form single latent facatoröh]ö(j+ )üö}ö(hîPthreshold: The distance threshold. latent factors with similarity below theöh]öhîPthreshold: The distance threshold. latent factors with similarity below theöůöüö}ö(hjE hjC ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj4
hKhj? ubjQ )üö}ö(hhh]öh?)üö}ö(hî6threshold will be merged to form single latent facatoröh]öhî6threshold will be merged to form single latent facatoröůöüö}ö(hjV hjT ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hKhjQ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj? ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj4
hKhjy
hhubj% )üö}ö(hX merge_fn: A function which will be used to merge latent factors. The default
is :func:`numpy.mean`, i.e. the newly formed (merged) latent factor
will be the mean of the merged ones. Supply any function here which
has the same interface, i.e. takes a matrix and an axis.öh]ö(j+ )üö}ö(hîRmerge_fn: A function which will be used to merge latent factors. The defaultöh]öhîRmerge_fn: A function which will be used to merge latent factors. The defaultöůöüö}ö(hjt hjr ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj4
hKhjn ubjQ )üö}ö(hhh]öh?)üö}ö(hî└is :func:`numpy.mean`, i.e. the newly formed (merged) latent factor
will be the mean of the merged ones. Supply any function here which
has the same interface, i.e. takes a matrix and an axis.öh]ö(hîis öůöüö}ö(hîis öhjâ ubhş)üö}ö(hî:func:`numpy.mean`öh]öj6 )üö}ö(hjÄ h]öhînumpy.mean()öůöüö}ö(hhhjÉ ubah}ö(h]öh!]ö(jW
îpyöîpy-funcöeh#]öh%]öh']öuh)j5 hjî ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöîfuncöî refdomainöjÜ îrefexplicitöëjg
jŘ jh
Nji
î
numpy.meanöjk
hđjl
ëuh)hČhj4
hKhjâ ubhîź, i.e. the newly formed (merged) latent factor
will be the mean of the merged ones. Supply any function here which
has the same interface, i.e. takes a matrix and an axis.öůöüö}ö(hîź, i.e. the newly formed (merged) latent factor
will be the mean of the merged ones. Supply any function here which
has the same interface, i.e. takes a matrix and an axis.öhjâ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hKhjÇ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjn ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj4
hKhjy
hhubj% )üö}ö(hîÇplot_dendro: Boolean. If True, the function will plot a dendrogram showing
which latent factors are merged and the threshold.öh]ö(j+ )üö}ö(hîMplot_dendro: Boolean. If True, the function will plot a dendrogram showingöh]öhîMplot_dendro: Boolean. If True, the function will plot a dendrogram showingöůöüö}ö(hjă hj┼ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj4
hKhj┴ ubjQ )üö}ö(hhh]öh?)üö}ö(hî2which latent factors are merged and the threshold.öh]öhî2which latent factors are merged and the threshold.öůöüö}ö(hjě hjÍ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj4
hKhjË ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj┴ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj4
hKhjy
hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hjř hhhj4
hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj2 hhhjG hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ j jR ëuh)h]hhhhhNhNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î2multivariate_logrank_test() (in module maui.utils)öî$maui.utils.multivariate_logrank_testöhNtöauh)h,hhhhhî]/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.multivariate_logrank_testöhNubh^)üö}ö(hhh]ö(hc)üö}ö(hî^multivariate_logrank_test(y, survival, duration_column='duration', observed_column='observed')öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj hhhî]/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.multivariate_logrank_testöhNubh|)üö}ö(hîmultivariate_logrank_testöh]öhîmultivariate_logrank_testöůöüö}ö(hhhj) hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj hhhj( hNubhî)üö}ö(hîCy, survival, duration_column='duration', observed_column='observed'öh]ö(hĺ)üö}ö(hjÖ h]öhîyöůöüö}ö(hhhj; ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj7 ubhĺ)üö}ö(hîsurvivalöh]öhîsurvivalöůöüö}ö(hhhjH ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj7 ubhĺ)üö}ö(hîduration_column='duration'öh]öhîduration_column='duration'öůöüö}ö(hhhjV ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj7 ubhĺ)üö}ö(hîobserved_column='observed'öh]öhîobserved_column='observed'öůöüö}ö(hhhjd ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhj7 ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj hhhj( hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj~ ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hj{ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöj+ îrefdocöhđuh)hČhjx ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj hhhNhNubeh}ö(h]öj ah!]öh#]öj ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃj+ uh)hbhj hhhj( hNubhň)üö}ö(hhh]ö(h?)üö}ö(hX Compute the multivariate log-rank test for differential survival
among the groups defined by ``y`` in the survival data in ``survival``,
under the null-hypothesis that all groups have the same survival function
(i.e. test whether at least one group has different survival rates)öh]ö(hî]Compute the multivariate log-rank test for differential survival
among the groups defined by öůöüö}ö(hî]Compute the multivariate log-rank test for differential survival
among the groups defined by öhję hhhNhNubj6 )üö}ö(hî``y``öh]öhîyöůöüö}ö(hhhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hję ubhî in the survival data in öůöüö}ö(hî in the survival data in öhję hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj┼ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hję ubhîĆ,
under the null-hypothesis that all groups have the same survival function
(i.e. test whether at least one group has different survival rates)öůöüö}ö(hîĆ,
under the null-hypothesis that all groups have the same survival function
(i.e. test whether at least one group has different survival rates)öhję hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hKhjŽ hhubj )üö}ö(hhh]ö(j% )üö}ö(hîYy: pd.Series, groups (clusters, subtypes). the index is
the sample namesöh]ö(j+ )üö}ö(hîHy: pd.Series, groups (clusters, subtypes). the index isöh]öhîHy: pd.Series, groups (clusters, subtypes). the index isöůöüö}ö(hjš hjň ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj hKhjß ubjQ )üö}ö(hhh]öh?)üö}ö(hîthe sample namesöh]öhîthe sample namesöůöüö}ö(hj° hj÷ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hK hjˇ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjß ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj hKhjŮ ubj% )üö}ö(hîřsurvival: pd.DataFrame with the same index as y, with columns for
the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öh]ö(j+ )üö}ö(hîKsurvival: pd.DataFrame with the same index as y, with columns foröh]öhîKsurvival: pd.DataFrame with the same index as y, with columns foröůöüö}ö(hj
hj
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj hK
hj
ubjQ )üö}ö(hhh]öh?)üö}ö(hî▒the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öh]öhî▒the duration (survival time for each patient) and whether
or not the death was observed. If the death was not
observed (sensored), the duration is the time of the last
followup.öůöüö}ö(hj'
hj%
ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hKhj"
ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj
ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj hK
hjŮ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hjŽ hhhj hNubh?)üö}ö(hîúduration_column: the name of the column in ``survival`` with the duration
observed_column: the name of the column in ``survival`` with True/False valuesöh]ö(hî3duration_column: the name of the column in öůöüö}ö(hî3duration_column: the name of the column in öhjE
hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjN
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjE
ubhîA with the duration
observed_column: the name of the column in öůöüö}ö(hîA with the duration
observed_column: the name of the column in öhjE
hhhNhNubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhja
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjE
ubhî with True/False valuesöůöüö}ö(hî with True/False valuesöhjE
hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hKhjŽ hhubj )üö}ö(hhh]öh?)üö}ö(hî%for whether death was observed or notöh]öhî%for whether death was observed or notöůöüö}ö(hj
hj}
ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hKhjz
ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hjŽ hhhj hNubh?)üö}ö(hî^test_statistic: the test statistic (chi-square)
p_value: the associated p_valueöh]öhî^test_statistic: the test statistic (chi-square)
p_value: the associated p_valueöůöüö}ö(hjô
hjĹ
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj hKhjŽ hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj hhhj( hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ jČ
jR ëuh)h]hhhhhj hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9îscale() (in module maui.utils)öîmaui.utils.scaleöhNtöauh)h,hhhhhîI/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.scaleöhNubh^)üö}ö(hhh]ö(hc)üö}ö(hî scale(df)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhj├
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhj┐
hhhîI/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.scaleöhNubh|)üö}ö(hîscaleöh]öhîscaleöůöüö}ö(hhhjĎ
hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hj┐
hhhjĐ
hNubhî)üö}ö(hîdföh]öhĺ)üö}ö(hîdföh]öhîdföůöüö}ö(hhhjń
ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjÓ
ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhj┐
hhhjĐ
hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj■
ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjű
ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöjď
îrefdocöhđuh)hČhj°
ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhj┐
hhhNhNubeh}ö(h]öj╣
ah!]öh#]öj╣
ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃjď
uh)hbhj╝
hhhjĐ
hNubhň)üö}ö(hhh]ö(h?)üö}ö(hîScale and center dataöh]öhîScale and center dataöůöüö}ö(hj+ hj) hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj╗
hKhj& hhubh?)üö}ö(hî<df: pd.DataFrame (n_features, n_samples) non-scaled dataöh]öhî<df: pd.DataFrame (n_features, n_samples) non-scaled dataöůöüö}ö(hj9 hj7 hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj╗
hKhj& hhubh?)üö}ö(hî8scaled: pd.DataFrame (n_features, n_samples) scaled dataöh]öhî8scaled: pd.DataFrame (n_features, n_samples) scaled dataöůöüö}ö(hjG hjE hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj╗
hK hj& hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhj╝
hhhjĐ
hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ j` jR ëuh)h]hhhhhj╗
hNubh-)üö}ö(hhh]öh}ö(h]öh!]öh#]öh%]öh']öîentriesö]ö(h9î0select_clinical_factors() (in module maui.utils)öî"maui.utils.select_clinical_factorsöhNtöauh)h,hhhhhNhNubh^)üö}ö(hhh]ö(hc)üö}ö(hîyselect_clinical_factors(z, survival, duration_column='duration', observed_column='observed', alpha=0.05, cox_penalizer=0)öh]ö(hi)üö}ö(hîmaui.utils.öh]öhîmaui.utils.öůöüö}ö(hhhjv hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hhhjr hhhî[/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.select_clinical_factorsöhNubh|)üö}ö(hîselect_clinical_factorsöh]öhîselect_clinical_factorsöůöüö}ö(hhhjů hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)h{hjr hhhjä hNubhî)üö}ö(hî`z, survival, duration_column='duration', observed_column='observed', alpha=0.05, cox_penalizer=0öh]ö(hĺ)üö}ö(hjő h]öhîzöůöüö}ö(hhhjŚ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubhĺ)üö}ö(hîsurvivalöh]öhîsurvivalöůöüö}ö(hhhjĄ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubhĺ)üö}ö(hîduration_column='duration'öh]öhîduration_column='duration'öůöüö}ö(hhhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubhĺ)üö}ö(hîobserved_column='observed'öh]öhîobserved_column='observed'öůöüö}ö(hhhj└ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubhĺ)üö}ö(hî
alpha=0.05öh]öhî
alpha=0.05öůöüö}ö(hhhj╬ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubhĺ)üö}ö(hîcox_penalizer=0öh]öhîcox_penalizer=0öůöüö}ö(hhhj▄ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hĹhjô ubeh}ö(h]öh!]öh#]öh%]öh']öhxhyuh)hőhjr hhhjä hNubhĘ)üö}ö(hhh]öhş)üö}ö(hhh]öh▓)üö}ö(hhh]öhî[source]öůöüö}ö(hhhj÷ ubah}ö(h]öh!]öhŻah#]öh%]öh']öuh)h▒hjˇ ubah}ö(h]öh!]öh#]öh%]öh']öîreftypeöh╚î refdomainöh╩îrefexplicitöëî reftargetöî_modules/maui/utilsöîrefidöjç îrefdocöhđuh)hČhj ubah}ö(h]öh!]öh#]öh%]öh']öîexpröhěuh)hžhjr hhhNhNubeh}ö(h]öjm ah!]öh#]öjm ah%]öh']öh▀ëhÓî
maui.utilsöhÔhhŃjç uh)hbhjo hhhjä hNubhň)üö}ö(hhh]ö(h?)üö}ö(hX' Select latent factors which are predictive of survival. This is
accomplished by fitting a Cox Proportional Hazards (CPH) model to each
latent factor, while controlling for known covariates, and only keeping
those latent factors whose coefficient in the CPH is nonzero (adjusted
p-value < alpha).öh]öhX' Select latent factors which are predictive of survival. This is
accomplished by fitting a Cox Proportional Hazards (CPH) model to each
latent factor, while controlling for known covariates, and only keeping
those latent factors whose coefficient in the CPH is nonzero (adjusted
p-value < alpha).öůöüö}ö(hj# hj! hhhNhNubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hî[/home/jona/work/phd/maui/maui/maui/utils.py:docstring of maui.utils.select_clinical_factorsöhKhj hhubj )üö}ö(hhh]ö(j% )üö}ö(hîÇsurvival: pd.DataFrame of survival information and relevant covariates
(such as sex, age at diagnosis, or tumor stage)öh]ö(j+ )üö}ö(hîPsurvival: pd.DataFrame of survival information and relevant covariatesöh]öhîPsurvival: pd.DataFrame of survival information and relevant covariatesöůöüö}ö(hj9 hj7 ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj/ hK hj3 ubjQ )üö}ö(hhh]öh?)üö}ö(hî/(such as sex, age at diagnosis, or tumor stage)öh]öhî/(such as sex, age at diagnosis, or tumor stage)öůöüö}ö(hjJ hjH ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hK
hjE ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hj3 ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj/ hK hj0 ubj% )üö}ö(hîćduration_column: the name of the column in ``survival`` containing the
duration (time between diagnosis and death or last followup)öh]ö(j+ )üö}ö(hîIduration_column: the name of the column in ``survival`` containing theöh]ö(hî.duration_column: the name of the column in öůöüö}ö(hî.duration_column: the name of the column in öhjf ubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhjo ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hjf ubhî containing theöůöüö}ö(hî containing theöhjf ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hj/ hKhjb ubjQ )üö}ö(hhh]öh?)üö}ö(hî<duration (time between diagnosis and death or last followup)öh]öhî<duration (time between diagnosis and death or last followup)öůöüö}ö(hjŹ hjő ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hKhjł ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjb ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj/ hKhj0 hhubj% )üö}ö(hîoobserved_column: the name of the column in ``survival`` containing
indicating whether time of death is knownöh]ö(j+ )üö}ö(hîEobserved_column: the name of the column in ``survival`` containingöh]ö(hî.observed_column: the name of the column in öůöüö}ö(hî.observed_column: the name of the column in öhję ubj6 )üö}ö(hî``survival``öh]öhîsurvivalöůöüö}ö(hhhj▓ ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hję ubhî containingöůöüö}ö(hî containingöhję ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j* hj/ hK
hją ubjQ )üö}ö(hhh]öh?)üö}ö(hî)indicating whether time of death is knownöh]öhî)indicating whether time of death is knownöůöüö}ö(hjđ hj╬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hKhj╦ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hją ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj/ hK
hj0 hhubj% )üö}ö(hîualpha: threshold for p-value of CPH coefficients to call a latent
factor clinically relevant (p < alpha)öh]ö(j+ )üö}ö(hîNalpha: threshold for p-value of CPH coefficients to call a latentöh]öhîNalpha: threshold for p-value of CPH coefficients to call a latentöůöüö}ö(hjţ hjý ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj/ hKhjŔ ubjQ )üö}ö(hhh]öh?)üö}ö(hî&factor clinically relevant (p < alpha)öh]öhî&factor clinically relevant (p < alpha)öůöüö}ö(hj hjř ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hKhj˙ ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjŔ ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj/ hKhj0 hhubeh}ö(h]öh!]öh#]öh%]öh']öuh)j hj hhhj/ hNubh?)üö}ö(hîXcox_penalizer: penalty coefficient in Cox PH solver (see ``lifelines.CoxPHFitter``)öh]ö(hî>cox_penalizer: penalty coefficient in Cox PH solver (see öůöüö}ö(hî>cox_penalizer: penalty coefficient in Cox PH solver (see öhj hhhNhNubj6 )üö}ö(hî``lifelines.CoxPHFitter``öh]öhîlifelines.CoxPHFitteröůöüö}ö(hhhj& ubah}ö(h]öh!]öh#]öh%]öh']öuh)j5 hj ubhî)öůöüö}ö(hjĐ hj hhhNhNubeh}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hKhj hhubj )üö}ö(hhh]öj% )üö}ö(hî«z_clinical: pd.DataFrame, subset of the latent factors which have been
determined to have clinical value (are individually predictive
of survival, controlling for covariates)öh]ö(j+ )üö}ö(hîFz_clinical: pd.DataFrame, subset of the latent factors which have beenöh]öhîFz_clinical: pd.DataFrame, subset of the latent factors which have beenöůöüö}ö(hjG hjE ubah}ö(h]öh!]öh#]öh%]öh']öuh)j* hj/ hKhjA ubjQ )üö}ö(hhh]öh?)üö}ö(hîgdetermined to have clinical value (are individually predictive
of survival, controlling for covariates)öh]öhîgdetermined to have clinical value (are individually predictive
of survival, controlling for covariates)öůöüö}ö(hjX hjV ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj/ hKhjS ubah}ö(h]öh!]öh#]öh%]öh']öuh)jP hjA ubeh}ö(h]öh!]öh#]öh%]öh']öuh)j$ hj/ hKhj> ubah}ö(h]öh!]öh#]öh%]öh']öuh)j hj hhhj/ hNubeh}ö(h]öh!]öh#]öh%]öh']öuh)hńhjo hhhjä hNubeh}ö(h]öh!]öh#]öh%]öh']öjM îpyöjO îfunctionöjQ jâ jR ëuh)h]hhhhhNhNubeh}ö(h]ö(îmodule-maui.utilsöîmaui-utilitiesöeh!]öh#]öîmaui utilitiesöah%]öh']öuh)h hhhhhh*hKubah}ö(h]öh!]öh#]öh%]öh']öîsourceöh*uh)hîcurrent_sourceöNîcurrent_lineöNîsettingsöîdocutils.frontendöîValuesöôö)üö}ö(hNî generatoröNî datestampöNîsource_linköNî
source_urlöNî
toc_backlinksöîentryöîfootnote_backlinksöKî
sectnum_xformöKîstrip_commentsöNîstrip_elements_with_classesöNî
strip_classesöNîreport_levelöKî
halt_levelöKîexit_status_levelöKîdebugöNîwarning_streamöNî tracebacköłîinput_encodingöî utf-8-sigöîinput_encoding_error_handleröîstrictöîoutput_encodingöîutf-8öîoutput_encoding_error_handleröj░ îerror_encodingöîUTF-8öîerror_encoding_error_handleröîbackslashreplaceöî
language_codeöîenöîrecord_dependenciesöNîconfigöNî id_prefixöhîauto_id_prefixöîidöî
dump_settingsöNîdump_internalsöNîdump_transformsöNîdump_pseudo_xmlöNîexpose_internalsöNîstrict_visitoröNî_disable_configöNî_sourceöh*î_destinationöNî
_config_filesö]öîpep_referencesöNîpep_base_urlöî https://www.python.org/dev/peps/öîpep_file_url_templateöîpep-%04döîrfc_referencesöNîrfc_base_urlöîhttps://tools.ietf.org/html/öî tab_widthöKîtrim_footnote_reference_spaceöëîfile_insertion_enabledöłîraw_enabledöKîsyntax_highlightöîlongöîsmart_quotesöłîsmartquotes_localesö]öîcharacter_level_inline_markupöëîdoctitle_xformöëî
docinfo_xformöKîsectsubtitle_xformöëîembed_stylesheetöëîcloak_email_addressesöłîenvöNubîreporteröNîindirect_targetsö]öîsubstitution_defsö}öîsubstitution_namesö}öîrefnamesö}öîrefidsö}öînameidsö}ö(jŐ jç h[h[j_ j_ j j j j jě jě j¨ j¨ j0 j0 j j j╣
j╣
jm jm uî nametypesö}ö(jŐ Nh[łj_ łj łj łjě łj¨ łj0 łj łj╣
łjm łuh}ö(jç hjć h îtargetöôö)üö}ö(hhh]öh}ö(h]öjć ah!]öh#]öh%]öh']öîismodöłuh)j˛ hhhhhh=hKubh[hdj_ jd j j j j jě jŢ j¨ j■ j0 j5 j j j╣
j┐
jm jr uî
footnote_refsö}öî
citation_refsö}öî
autofootnotesö]öîautofootnote_refsö]öîsymbol_footnotesö]öîsymbol_footnote_refsö]öî footnotesö]öî citationsö]öîautofootnote_startöKîsymbol_footnote_startöK îid_startöKîparse_messagesö]ö(h îsystem_messageöôö)üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubh î
literal_blocköôö)üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj( ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj hh¸ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöîSEVEREöîsourceöh¸îlineöKuh)j hhŠhhhh¸hKubj )üö}ö(hhh]öh?)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhjD ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjA ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöîERRORöîsourceöh¸îlineöKuh)j hhŠhhhh¸hKubj )üö}ö(hhh]öh?)üö}ö(hî;Block quote ends without a blank line; unexpected unindent.öh]öhî;Block quote ends without a blank line; unexpected unindent.öůöüö}ö(hhhj` ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj] ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöîWARNINGöîlineöK îsourceöh¸uh)j hhŠhhhh¸hNubj )üö}ö(hhh]öh?)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhj| ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjy ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöh¸uh)j hhŠhhhh¸hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjŚ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjö ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhją ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjö hh¸ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöh¸îlineöKuh)j hhŠhhhh¸hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj└ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjŻ ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj╬ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjŻ hjá ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjá îlineöKuh)j hjĆ hhhjá hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjÚ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjŠ ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj¸ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjŠ hjá ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjá îlineöK
uh)j hjĆ hhhjá hK
ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj hjĘ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjĘ îlineöKuh)j hjŚ hhhjĘ hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj; ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj8 ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjI ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj8 hjĘ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjĘ îlineöK uh)j hjŚ hhhjĘ hK ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjd ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hja ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjr ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hja hjż ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjż îlineöKuh)j hj× hhhjż hKubj )üö}ö(hhh]öh?)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjŹ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjŐ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöjż uh)j hj× hhhjż hKubj )üö}ö(hhh]öh?)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhjĘ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hją ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjZ îsourceöjż îlineöKuh)j hj× hhhjż hK
ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj├ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj└ ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjĐ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj└ hjż ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjż îlineöKuh)j hj× hhhjż hKubj )üö}ö(hhh]öh?)üö}ö(hhh]öhî╝duplicate object description of maui.utils.filter_factors_by_r2, other instance in /home/jona/work/phd/maui/maui/doc/filtering-and-merging-latent-factors.rst, use :noindex: for one of themöůöüö}ö(hhhjý ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjÚ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöj´ uh)j ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj hjp ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjp îlineöKuh)j hj_ hhhjp hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj/ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj, ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhj= ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj, hjp ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöjp îlineöK
uh)j hj_ hhhjp hK
ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjX ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjU ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjf ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjU hję ubeh}ö(h]öh!]öh#]öĽŞ h%]öh']öîlevelöKîtypeöj> îsourceöję îlineöKuh)j hjq hhhję hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjü ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj~ ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjĆ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj~ hję ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöję îlineöKuh)j hjq hhhję hKubj )üö}ö(hhh]öh?)üö}ö(hhh]öhîÁduplicate object description of maui.utils.merge_factors, other instance in /home/jona/work/phd/maui/maui/doc/filtering-and-merging-latent-factors.rst, use :noindex: for one of themöůöüö}ö(hhhj¬ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjž ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöjG uh)j ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj─ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj┴ ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjĎ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj┴ hj4
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj4
îlineöKuh)j hjř hhhj4
hKubj )üö}ö(hhh]öh?)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhjÝ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjŕ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjZ îsourceöj4
îlineöK uh)j hjř hhhj4
hKubj )üö}ö(hhh]öh?)üö}ö(hî;Block quote ends without a blank line; unexpected unindent.öh]öhî;Block quote ends without a blank line; unexpected unindent.öůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöK
îsourceöj4
uh)j hjř hhhj4
hNubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj# ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj1 ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj îlineöKuh)j hjŽ hhhj hKubj )üö}ö(hhh]öh?)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjL ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjI ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöj uh)j hjŽ hhhj hKubj )üö}ö(hhh]öh?)üö}ö(hîUnexpected indentation.öh]öhîUnexpected indentation.öůöüö}ö(hhhjg ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjd ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjZ îsourceöj îlineöKuh)j hjŽ hhhj hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjé ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjÉ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj hj ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj îlineöKuh)j hjŽ hhhj hKubj )üö}ö(hhh]öh?)üö}ö(hhh]öhîŤduplicate object description of maui.utils.scale, other instance in /home/jona/work/phd/maui/maui/doc/data-normalization.rst, use :noindex: for one of themöůöüö}ö(hhhjź ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjĘ ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöjĐ
uh)j ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj┼ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj┬ ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhjË ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj┬ hj╗
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj╗
îlineöKuh)j hj& hhhj╗
hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhjţ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjŰ ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjŘ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjŰ hj╗
ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj╗
îlineöKuh)j hj& hhhj╗
hKubj )üö}ö(hhh]öh?)üö}ö(hhh]öhî┐duplicate object description of maui.utils.select_clinical_factors, other instance in /home/jona/work/phd/maui/maui/doc/filtering-and-merging-latent-factors.rst, use :noindex: for one of themöůöüö}ö(hhhj ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöjä uh)j ubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhj1 ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hj. ubj' )üö}ö(hîParameters
----------öh]öhîParameters
----------öůöüö}ö(hhhj? ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hj. hj/ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj/ îlineöKuh)j hj hhhj/ hKubj )üö}ö(hhh]öh?)üö}ö(hî?Definition list ends without a blank line; unexpected unindent.öh]öhî?Definition list ends without a blank line; unexpected unindent.öůöüö}ö(hhhjZ ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjW ubah}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöjv îlineöKîsourceöj/ uh)j hj hhhj/ hKubj )üö}ö(hhh]ö(h?)üö}ö(hîUnexpected section title.öh]öhîUnexpected section title.öůöüö}ö(hhhju ubah}ö(h]öh!]öh#]öh%]öh']öuh)h>hjr ubj' )üö}ö(hîReturns
-------öh]öhîReturns
-------öůöüö}ö(hhhjâ ubah}ö(h]öh!]öh#]öh%]öh']öhxhyuh)j& hjr hj/ ubeh}ö(h]öh!]öh#]öh%]öh']öîlevelöKîtypeöj> îsourceöj/ îlineöKuh)j hj hhhj/ hKubeîtransform_messagesö]öîtransformeröNî
decorationöNhhub.