[17832a]: / doc / _build / html / index.html

Download this file

170 lines (132 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Multi-omics Autoencoder Integration (maui) &#8212; 0.1 documentation</title>
<link rel="stylesheet" href="_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="shortcut icon" href="_static/icons8-beach-30.png"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Multi-modal Autoencoders" href="autoencoder-integration.html" />
<link rel="stylesheet" href="_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="multi-omics-autoencoder-integration-maui">
<h1>Multi-omics Autoencoder Integration (maui)<a class="headerlink" href="#multi-omics-autoencoder-integration-maui" title="Permalink to this headline"></a></h1>
<p>maui is an autoencoder-based framework for multi-omics data analysis. It consists of two main modules, <a class="reference internal" href="maui.html"><span class="doc">The Maui Class</span></a>, and <a class="reference internal" href="utils.html"><span class="doc">Maui Utilities</span></a>. For an introduction of the use of autoencoders for multi-omics integration, see <a class="reference internal" href="autoencoder-integration.html"><span class="doc">Multi-modal Autoencoders</span></a>.</p>
<div class="section" id="table-of-contents">
<h2>Table of contents<a class="headerlink" href="#table-of-contents" title="Permalink to this headline"></a></h2>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="autoencoder-integration.html">Multi-modal Autoencoders</a><ul>
<li class="toctree-l2"><a class="reference internal" href="autoencoder-integration.html#variational-autoencoders">Variational Autoencoders</a></li>
<li class="toctree-l2"><a class="reference internal" href="autoencoder-integration.html#stacked-autoencoders">Stacked Autoencoders</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="data-normalization.html">Data and Normalization</a></li>
<li class="toctree-l1"><a class="reference internal" href="filtering-and-merging-latent-factors.html">Filtering and Merging latent factors</a><ul>
<li class="toctree-l2"><a class="reference internal" href="filtering-and-merging-latent-factors.html#dropping-unexplanatory-latent-factors">Dropping unexplanatory latent factors</a></li>
<li class="toctree-l2"><a class="reference internal" href="filtering-and-merging-latent-factors.html#merging-similar-latent-factors">Merging similar latent factors</a></li>
<li class="toctree-l2"><a class="reference internal" href="filtering-and-merging-latent-factors.html#supervised-filtering-of-latent-factors">Supervised filtering of latent factors</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="saving-and-loading-models.html">Saving and loading models</a><ul>
<li class="toctree-l2"><a class="reference internal" href="saving-and-loading-models.html#saving-a-trained-model-to-disk">Saving a trained model to disk</a></li>
<li class="toctree-l2"><a class="reference internal" href="saving-and-loading-models.html#loading-a-model-from-disk">Loading a model from disk</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="maui.html">The Maui Class</a></li>
<li class="toctree-l1"><a class="reference internal" href="utils.html">Maui Utilities</a></li>
</ul>
</div>
</div>
<div class="section" id="quickstart">
<h2>Quickstart<a class="headerlink" href="#quickstart" title="Permalink to this headline"></a></h2>
<p>The <code class="docutils literal notranslate"><span class="pre">Maui</span></code> class implements <code class="docutils literal notranslate"><span class="pre">scikit-learn</span></code>’s <code class="docutils literal notranslate"><span class="pre">BaseEstimator</span></code>. In order to infer latent factors in multi-omics data, first instantiate a <code class="docutils literal notranslate"><span class="pre">Maui</span></code> model with the desired parameters, and then fit it to some data:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">maui</span> <span class="kn">import</span> <span class="n">Maui</span>
<span class="n">maui_model</span> <span class="o">=</span> <span class="n">maui</span><span class="o">.</span><span class="n">Maui</span><span class="p">(</span><span class="n">n_hidden</span><span class="o">=</span><span class="p">[</span><span class="mi">900</span><span class="p">],</span> <span class="n">n_latent</span><span class="o">=</span><span class="mi">70</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">100</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">maui_model</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">({</span><span class="s1">&#39;mRNA&#39;</span><span class="p">:</span> <span class="n">gex</span><span class="p">,</span> <span class="s1">&#39;Mutations&#39;</span><span class="p">:</span> <span class="n">mut</span><span class="p">,</span> <span class="s1">&#39;CNV&#39;</span><span class="p">:</span> <span class="n">cnv</span><span class="p">})</span>
</pre></div>
</div>
<p>This will instantiate a maui model with one hidden layer of 900 nodes, and a middle layer of 70 nodes, which will be traiend for 100 epochs. It then feeds the multi-omics data in <code class="docutils literal notranslate"><span class="pre">gex</span></code>, <code class="docutils literal notranslate"><span class="pre">mut</span></code>, and <code class="docutils literal notranslate"><span class="pre">cnv</span></code> to the fitting procedure. The omics data (<code class="docutils literal notranslate"><span class="pre">gex</span></code> et. al.) are <code class="docutils literal notranslate"><span class="pre">pandas.DataFrame</span></code> objects of dimension (n_features, n_samples). The return object <code class="docutils literal notranslate"><span class="pre">z</span></code> is a <code class="docutils literal notranslate"><span class="pre">pandas.DataFrame</span></code> (n_samples, n_latent), and may be used for further analysis.</p>
<p>In order to check the model’s convergance, the <code class="docutils literal notranslate"><span class="pre">hist</span></code> object may be inspected, and plotted:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="n">maui_model</span><span class="o">.</span><span class="n">hist</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
</pre></div>
</div>
<img alt="_images/hist.png" src="_images/hist.png" />
<p>For a more comprehensive example, check out <a class="reference external" href="https://github.com/BIMSBbioinfo/maui/blob/master/vignette/maui_vignette.ipynb">our vignette</a>.</p>
<div class="section" id="indices-and-tables">
<h3>Indices and tables<a class="headerlink" href="#indices-and-tables" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></li>
<li><a class="reference internal" href="py-modindex.html"><span class="std std-ref">Module Index</span></a></li>
<li><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="#">
<img class="logo" src="_static/hex-maui.png" alt="Logo"/>
</a></p>
<h1 class="logo"><a href="#"></a></h1>
<h3>Navigation</h3>
<ul>
<li class="toctree-l1"><a class="reference internal" href="autoencoder-integration.html">Multi-modal Autoencoders</a></li>
<li class="toctree-l1"><a class="reference internal" href="data-normalization.html">Data and Normalization</a></li>
<li class="toctree-l1"><a class="reference internal" href="filtering-and-merging-latent-factors.html">Filtering and Merging latent factors</a></li>
<li class="toctree-l1"><a class="reference internal" href="saving-and-loading-models.html">Saving and loading models</a></li>
<li class="toctree-l1"><a class="reference internal" href="maui.html">The Maui Class</a></li>
<li class="toctree-l1"><a class="reference internal" href="utils.html">Maui Utilities</a></li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="#">Documentation overview</a><ul>
<li>Next: <a href="autoencoder-integration.html" title="next chapter">Multi-modal Autoencoders</a></li>
</ul></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
&copy;2018, Jonathan Ronen, Altuna Akalin.
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 1.8.2</a>
&amp; <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.12</a>
|
<a href="_sources/index.rst.txt"
rel="nofollow">Page source</a>
</div>
</body>
</html>