[b44cdf]: / tests / deseq2 / test_results.py

Download this file

321 lines (288 with data), 11.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import unittest
import numpy as np
from inmoose.deseq2 import DESeq, makeExampleDESeqDataSet
from inmoose.utils import Factor
class Test(unittest.TestCase):
def test_results(self):
"""test that results work as expected and throw errors"""
# test contrasts
dds = makeExampleDESeqDataSet(n=200, m=12, seed=42)
dds.obs["condition"] = Factor(np.repeat([1, 2, 3], 4))
dds.obs["group"] = Factor(np.repeat([[1, 2]], 6, axis=0).flatten())
dds.obs["foo"] = np.repeat(["lo", "hi"], 6)
dds.counts()[:, 0] = np.repeat([100, 200, 800], 4)
dds.design = "~ group + condition"
# calling results too early
with self.assertRaisesRegex(
ValueError,
expected_regex="could not find results in obj. first run DESeq()",
):
dds.results()
dds.sizeFactors = np.ones(dds.n_obs)
dds = DESeq(dds)
res = dds.results()
# TODO
# show_res = res.show()
summary = res.summary()
print(summary)
summary_ref = """
out of 200 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 1, 0.50%
LFC < 0 (down) : 0, 0.00%
outliers [1] : 0, 0.00%
low counts [2] : 0, 0.00%
(mean count < 0)
[1] see 'cooksCutoff' argument of results()
[2] see 'independentFiltering' argument of results()
"""
self.assertEqual(summary, summary_ref)
# various results error checking
with self.assertRaisesRegex(
ValueError,
expected_regex="the LRT requires the user to run nbinomLRT or DESeq",
):
dds.results(test="LRT")
with self.assertRaisesRegex(
ValueError,
expected_regex="when testing altHypothesis='lessAbs', set the argument lfcThreshold to a positive value",
):
dds.results(altHypothesis="lessAbs")
with self.assertRaisesRegex(
ValueError, expected_regex="'name' should be a string"
):
dds.results(name=["Intercept", "group1"])
with self.assertRaisesRegex(ValueError, expected_regex="foo is not a factor"):
dds.results(contrast=["foo", "B", "A"])
with self.assertRaisesRegex(
ValueError,
expected_regex="as 1 is the reference level, was expecting condition_4_vs_1 to be present in",
):
dds.results(contrast=["condition", "4", "1"])
with self.assertRaisesRegex(
ValueError, expected_regex="invalid value for test: foo"
):
dds.results(test="foo")
with self.assertRaisesRegex(
ValueError,
expected_regex="numeric contrast vector should have one element for every element of",
):
dds.results(contrast=False)
with self.assertRaisesRegex(
ValueError,
expected_regex="'contrast', as a pair of lists, should have length 2",
):
dds.results(contrast=["a", "b", "c", "d"])
with self.assertRaisesRegex(
ValueError, expected_regex="1 and 1 should be different level names"
):
dds.results(contrast=["condition", "1", "1"])
dds.results(independentFiltering=False)
dds.results(contrast=["condition_2_vs_1"])
with self.assertRaisesRegex(
ValueError,
expected_regex="condition_3_vs_1 and condition_3_vs_1 should be different level names",
):
dds.results(
contrast=["condition_2_vs_1", "condition_3_vs_1", "condition_3_vs_1"]
)
with self.assertRaisesRegex(
ValueError,
expected_regex="'contrast', as a pair of lists, should have lists of strings as elements",
):
dds.results(contrast=["condition_2_vs_1", 1])
with self.assertRaisesRegex(
ValueError,
expected_regex="all elements of the 2-element contrast should be elements of",
):
dds.results(contrast=["condition_2_vs_1", "foo"])
with self.assertRaisesRegex(
ValueError,
expected_regex="elements in the 2-element contrast should only appear in the numerator",
):
dds.results(contrast=["condition_2_vs_1", "condition_2_vs_1"])
with self.assertRaisesRegex(
ValueError,
expected_regex="all elements of the 2-element contrast should be elements of",
):
dds.results(contrast=["", ""])
with self.assertRaisesRegex(
ValueError,
expected_regex="numeric contrast vector should have one element for every element of",
):
dds.results(contrast=np.repeat(0, 6))
with self.assertRaisesRegex(ValueError, expected_regex="foo is not a factor"):
dds.results(contrast=["foo", "lo", "hi"])
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "3"]).log2FoldChange.iloc[0],
-3,
delta=1e-6,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "2"]).log2FoldChange.iloc[0],
-1,
delta=1e-6,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "2", "3"]).log2FoldChange.iloc[0],
-2,
delta=1e-6,
)
# test a number of contrast as list options
self.assertAlmostEqual(
dds.results(
contrast=["condition_3_vs_1", "condition_2_vs_1"]
).log2FoldChange.iloc[0],
2,
delta=1e-6,
)
dds.results(
contrast=["condition_3_vs_1", "condition_2_vs_1"], listValues=[0.5, -0.5]
)
dds.results(contrast=["condition_3_vs_1", []])
dds.results(contrast=["condition_3_vs_1", []], listValues=[0.5, -0.5])
dds.results(contrast=[[], "condition_2_vs_1"])
dds.results(contrast=[[], "condition_2_vs_1"], listValues=[0.5, -0.5])
# test no prior on intercept
self.assertTrue(np.array_equal(dds.betaPriorVar, np.repeat(1e6, 4)))
# test thresholding
dds.results(lfcThreshold=np.log2(1.5))
dds.results(lfcThreshold=1, altHypothesis="lessAbs")
dds.results(lfcThreshold=1, altHypothesis="greater")
dds.results(lfcThreshold=1, altHypothesis="less")
dds3 = DESeq(dds, betaPrior=True)
with self.assertRaisesRegex(
ValueError,
expected_regex="testing altHypothesis='lessAbs' requires setting the DESeq\(\) argument betaPrior=False",
):
dds3.results(lfcThreshold=1, altHypothesis="lessAbs")
def test_results_zero_intercept(self):
"""test results on designs with zero intercept"""
dds = makeExampleDESeqDataSet(n=100, m=12, seed=42)
dds.obs["condition"] = Factor(np.repeat([1, 2, 3], 4))
dds.obs["group"] = Factor(np.repeat([[1, 2]], 6, axis=0).flatten())
dds.X[:, 0] = np.repeat([100, 200, 400], 4)
dds.design = "~ 0 + condition"
dds = DESeq(dds, betaPrior=False)
self.assertAlmostEqual(dds.results().log2FoldChange.iloc[0], 2, delta=0.1)
self.assertAlmostEqual(
dds.results(contrast=["condition", "2", "1"]).log2FoldChange.iloc[0],
1.25,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "3", "2"]).log2FoldChange.iloc[0],
0.68,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "3"]).log2FoldChange.iloc[0],
-2,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "2"]).log2FoldChange.iloc[0],
-1.25,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "2", "3"]).log2FoldChange.iloc[0],
-0.68,
delta=0.1,
)
with self.assertRaisesRegex(
ValueError,
expected_regex="condition\[4\] and condition\[1\] are expected to be in",
):
dds.results(contrast=["condition", "4", "1"])
dds.design = "~ 0 + group + condition"
dds = DESeq(dds, betaPrior=False)
self.assertAlmostEqual(dds.results().log2FoldChange.iloc[0], 2, delta=0.1)
self.assertAlmostEqual(
dds.results(contrast=["condition", "3", "1"]).log2FoldChange.iloc[0],
2,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "2", "1"]).log2FoldChange.iloc[0],
1.25,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "3", "2"]).log2FoldChange.iloc[0],
0.68,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "3"]).log2FoldChange.iloc[0],
-2,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "1", "2"]).log2FoldChange.iloc[0],
-1.25,
delta=0.1,
)
self.assertAlmostEqual(
dds.results(contrast=["condition", "2", "3"]).log2FoldChange.iloc[0],
-0.68,
delta=0.1,
)
@unittest.skip("LRT is not implemented yet")
def test_results_likelihood_ratio_test(self):
"""test results with likelihood ratio test"""
dds = makeExampleDESeqDataSet(n=100)
dds.obs["group"] = Factor([1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
dds.design = "~ group + condition"
dds = DESeq(dds, test="LRT", reduced="~group")
self.assertFalse(
np.all(
dds.results(name="condition_B_vs_A").stat
== dds.results(name="condition_B_vs_A", test="Wald").stat
)
)
# LFC are already MLE
with self.assertRaisesRegex(
ValueError,
expected_regex="addMLE=TRUE is only for when a beta prior was used",
):
dds.results(addMLE=True)
with self.assertRaisesRegex(
ValueError,
expected_regex="tests of log fold change above or below a theshold must be Wald tests",
):
dds.results(lfcThreshold=1, test="LRT")
self.assertTrue(
np.all(
dds.results(test="LRT", contrast=["group", "1", "2"]).log2FoldChange
== -dds.results(test="LRT", contrast=["group", "2", "1"]).log2FoldChange
)
)
def test_results_basics(self):
"""test that results basics regarding format, saveCols, tidy, MLE, remove are working"""
dds = makeExampleDESeqDataSet(n=100)
dds.var["score"] = np.arange(1, 101)
dds = DESeq(dds)
# try saving metadata columns
res = dds.results(saveCols="score") # string
# check tidy-ness (unimplemented)
with self.assertRaises(NotImplementedError):
res = dds.results(tidy=True)
self.assertTrue(res.columns[0] == "rows")
# test MLE and 'name'
dds2 = DESeq(dds, betaPrior=True)
dds2.results(addMLE=True)
with self.assertRaises(ValueError):
dds2.results(name="condition_B_vs_A", addMLE=True)
# test remove results
dds = dds.removeResults()
self.assertTrue(dds.var.description.filter("results").empty)
@unittest.skip("not sure what to test")
def test_results_custom_filters(self):
"""test that custom filters can be provided to results()"""
dds = makeExampleDESeqDataSet(n=200, m=4, betaSD=np.repeat([0, 2], [150, 50]))
dds = DESeq(dds)
_res = dds.results()
_method = "BH"
_alpha = 0.1
raise NotImplementedError()