Variability in datasets not only results from biological processes, but also from technical bias [Lander1999]. InMoose offers a collection of tools for the correction of such technical bias, also called batch effects.
Please refer to [Behdenna2023] for a detailed comparison of InMoose implementation with the original R implementations.
[Behdenna2023] | A. Behdenna, M. Colange, J. Haziza, A. Gema, G. Appé, C.-A. Azencott and A. Nordor. 2023. pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. BMC Bioinformatics 7;24(1):459. :doi:`10.1186/s12859-023-05578-5` |
[Johnson2007] | W. E. Johnson, C. Li, A. Rabinovic. 2007. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–12. :doi:`10.1093/biostatistics/kxj037` |
[Lander1999] | E. S. Lander. 1999. Array of hope. Nature Genetics, 21(1 Suppl), 3-4. :doi:`10.1038/4427` |
[Zhang2020] | Y. Zhang, G. Parmigiani, W. E. Johnson. 2020. ComBat-Seq: batch effect adjustment for RNASeq count data. NAR Genomics and Bioinformatics, 2(3). :doi:`10.1093/nargab/lqaa078` |