|
a |
|
b/tests/deseq2/test_weights.py |
|
|
1 |
import sys |
|
|
2 |
import unittest |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
import pandas as pd |
|
|
6 |
|
|
|
7 |
from inmoose.deseq2 import DESeq, makeExampleDESeqDataSet, nbinomWaldTest |
|
|
8 |
from inmoose.deseq2.fitNbinomGLMs import fitNbinomGLMsOptim |
|
|
9 |
from inmoose.utils import Factor |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
class Test(unittest.TestCase): |
|
|
13 |
def test_weights(self): |
|
|
14 |
"""test that weights work""" |
|
|
15 |
dds = makeExampleDESeqDataSet(n=10, seed=42) |
|
|
16 |
w = np.ones(dds.shape) |
|
|
17 |
w[0, 0] = 0 |
|
|
18 |
# check that weight to 0 is like a remove sample |
|
|
19 |
dds = DESeq(dds, quiet=True) |
|
|
20 |
dds2 = dds.copy() |
|
|
21 |
dds2.layers["weights"] = w |
|
|
22 |
dds2 = nbinomWaldTest(dds2) |
|
|
23 |
dds3 = dds.copy()[1:, :] |
|
|
24 |
dds3 = nbinomWaldTest(dds3) |
|
|
25 |
|
|
|
26 |
# in terms of LFC, SE and deviance |
|
|
27 |
self.assertAlmostEqual( |
|
|
28 |
dds2.results().log2FoldChange.iloc[0], |
|
|
29 |
dds3.results().log2FoldChange.iloc[0], |
|
|
30 |
delta=1e-5, |
|
|
31 |
) |
|
|
32 |
self.assertAlmostEqual( |
|
|
33 |
dds2.results().lfcSE.iloc[0], dds3.results().lfcSE.iloc[0], delta=1e-6 |
|
|
34 |
) |
|
|
35 |
self.assertAlmostEqual( |
|
|
36 |
dds2.var["deviance"].iloc[0], dds3.var["deviance"].iloc[0], delta=1e-7 |
|
|
37 |
) |
|
|
38 |
|
|
|
39 |
# check weights working in the optim code |
|
|
40 |
nf = np.repeat(dds.sizeFactors.values[:, None], dds.n_vars, axis=1) |
|
|
41 |
o = fitNbinomGLMsOptim( |
|
|
42 |
obj=dds, |
|
|
43 |
modelMatrix=dds.design, |
|
|
44 |
lambda_=np.repeat(1e-6, 2), |
|
|
45 |
colsForOptim=[0], |
|
|
46 |
colStable=np.repeat(True, dds.n_vars), |
|
|
47 |
normalizationFactors=nf, |
|
|
48 |
alpha_hat=dds.var["dispersion"], |
|
|
49 |
weights=w, |
|
|
50 |
useWeights=True, |
|
|
51 |
betaMatrix=pd.DataFrame(np.zeros((dds.n_vars, 2))), |
|
|
52 |
betaSE=pd.DataFrame(np.zeros((dds.n_vars, 2))), |
|
|
53 |
betaConv=np.repeat(False, dds.n_vars), |
|
|
54 |
beta_mat=np.zeros((dds.n_vars, 2)), |
|
|
55 |
mu=np.zeros(dds.shape), |
|
|
56 |
logLike=np.zeros(dds.n_vars), |
|
|
57 |
) |
|
|
58 |
self.assertAlmostEqual( |
|
|
59 |
dds3.results().log2FoldChange.iloc[0], |
|
|
60 |
o["betaMatrix"].iloc[0, 1], |
|
|
61 |
delta=1e-4, |
|
|
62 |
) |
|
|
63 |
|
|
|
64 |
def test_weights_with_beta_prior(self): |
|
|
65 |
"""test that weights can be used with betaPrior=True""" |
|
|
66 |
dds = makeExampleDESeqDataSet(n=10, seed=42) |
|
|
67 |
w = np.ones(dds.shape) |
|
|
68 |
w[0, 0] = 0 |
|
|
69 |
dds.layers["weights"] = w |
|
|
70 |
dds = DESeq(dds, betaPrior=True, quiet=True) |
|
|
71 |
|
|
|
72 |
# check weights working for intercept only |
|
|
73 |
dds.design = "~1" |
|
|
74 |
dds = DESeq(dds, quiet=True) |
|
|
75 |
dds2 = dds |
|
|
76 |
dds2.layers["weights"] = w |
|
|
77 |
dds2 = nbinomWaldTest(dds2) |
|
|
78 |
dds3 = dds[1:, :] |
|
|
79 |
dds3 = nbinomWaldTest(dds3) |
|
|
80 |
|
|
|
81 |
self.assertEqual( |
|
|
82 |
dds2.results().log2FoldChange.iloc[0], dds3.results().log2FoldChange.iloc[0] |
|
|
83 |
) |
|
|
84 |
self.assertEqual(dds2.results().lfcSE.iloc[0], dds3.results().lfcSE.iloc[0]) |
|
|
85 |
self.assertEqual(dds2.var["deviance"].iloc[0], dds3.var["deviance"].iloc[0]) |
|
|
86 |
|
|
|
87 |
def test_weights_downweight_outliers(self): |
|
|
88 |
"""test that weights downweight outlier in dispersion estimation""" |
|
|
89 |
dds = makeExampleDESeqDataSet(n=10, seed=42) |
|
|
90 |
dds.counts()[0, 0] = 100 |
|
|
91 |
dds.sizeFactors = np.ones(dds.n_obs) |
|
|
92 |
dds = dds.estimateDispersions() |
|
|
93 |
dds2 = dds.copy() |
|
|
94 |
w = np.ones(dds.shape) |
|
|
95 |
w[0, 0] = 0 |
|
|
96 |
dds2.layers["weights"] = w |
|
|
97 |
dds2 = dds2.estimateDispersions() |
|
|
98 |
dds3 = dds.copy()[1:, :] |
|
|
99 |
dds3 = dds3.estimateDispersions() |
|
|
100 |
|
|
|
101 |
self.assertAlmostEqual( |
|
|
102 |
dds2.var["dispGeneEst"].iloc[0], dds3.var["dispGeneEst"].iloc[0], delta=1e-1 |
|
|
103 |
) |
|
|
104 |
# MAP estimates won't be equal because of different dispersion prior widths |
|
|
105 |
self.assertGreater(dds.var["dispMAP"].iloc[0], dds2.var["dispMAP"].iloc[0]) |
|
|
106 |
|
|
|
107 |
def test_weights_warning(self): |
|
|
108 |
"""test that weights failing check gives warning, passes them through""" |
|
|
109 |
dds = makeExampleDESeqDataSet(n=10, seed=42) |
|
|
110 |
w = np.ones(dds.shape) |
|
|
111 |
w[0:6, 0] = 0 |
|
|
112 |
dds.layers["weights"] = w |
|
|
113 |
with self.assertLogs("inmoose", level="WARNING") as logChecker: |
|
|
114 |
dds = DESeq(dds) |
|
|
115 |
self.assertRegex( |
|
|
116 |
# account for https://github.com/python/cpython/issues/86109 |
|
|
117 |
logChecker.output[0] |
|
|
118 |
if sys.version_info >= (3, 10) |
|
|
119 |
else logChecker.output[3], |
|
|
120 |
"for 1 genes, the weights as supplied won't allow parameter estimation", |
|
|
121 |
) |
|
|
122 |
self.assertTrue(dds.var["allZero"].iloc[0]) |
|
|
123 |
self.assertTrue(dds.var["weightsFail"].iloc[0]) |
|
|
124 |
dds.results() |
|
|
125 |
|
|
|
126 |
@unittest.skip("not sure what is tested here") |
|
|
127 |
def test_weights_CR(self): |
|
|
128 |
"""test that weights with and without CR term included""" |
|
|
129 |
alpha = 0.25 |
|
|
130 |
|
|
|
131 |
def dmr(x): |
|
|
132 |
return alpha |
|
|
133 |
|
|
|
134 |
dds = makeExampleDESeqDataSet( |
|
|
135 |
n=50, m=100, betaSD=1, interceptMean=10, interceptSD=0.5, dispMeanRel=dmr |
|
|
136 |
) |
|
|
137 |
dds.obs["group"] = Factor(np.repeat(np.arange(50), 2)) |
|
|
138 |
dds.design = "~0 + group + condition" |
|
|
139 |
w = np.ones(dds.shape) |
|
|
140 |
o = 35 |
|
|
141 |
w[0:o, :] = 1e-6 |
|
|
142 |
w[50 : (50 + o), :] = 1e-6 |
|
|
143 |
dds.layers["weights"] = w |
|
|
144 |
dds.counts()[1:o, :] = 1 |
|
|
145 |
dds.counts()[50 : (50 + o), :] = 1 |
|
|
146 |
dds.sizeFactors = 1 |
|
|
147 |
dds = dds.estimateDispersions(fitType="mean") |
|
|
148 |
dds.estimateDispersions(fitType="mean", useCR=False) |