Diff of /docs/source/pycombat.rst [000000] .. [ea0fd6]

Switch to unified view

a b/docs/source/pycombat.rst
1
=============================
2
Batch Effect Correction Tools
3
=============================
4
5
Variability in datasets not only results from biological processes, but also
6
from technical bias [Lander1999]_.
7
InMoose offers a collection of tools for the correction of such technical bias,
8
also called batch effects.
9
10
Please refer to [Behdenna2023]_ for a detailed comparison of InMoose
11
implementation with the original R implementations.
12
13
.. toctree::
14
   :maxdepth: 1
15
   :caption: Batch effect correction per type of data:
16
17
   for microarray data <pycombatnorm>
18
   for RNASeq data <pycombatseq>
19
20
21
References
22
==========
23
24
.. [Behdenna2023] A. Behdenna, M. Colange, J. Haziza, A. Gema, G. Appé, C.-A.
25
   Azencott and A.  Nordor. 2023. pyComBat, a Python tool for batch effects
26
   correction in high-throughput molecular data using empirical Bayes methods.
27
   *BMC Bioinformatics* 7;24(1):459. :doi:`10.1186/s12859-023-05578-5`
28
29
.. [Johnson2007] W. E. Johnson, C. Li, A. Rabinovic. 2007. Adjusting batch
30
   effects in microarray expression data using empirical Bayes methods.
31
   *Biostatistics*, 8, 118–12.  :doi:`10.1093/biostatistics/kxj037`
32
33
.. [Lander1999] E. S. Lander. 1999. Array of hope. *Nature Genetics*, 21(1
34
   Suppl), 3-4.  :doi:`10.1038/4427`
35
36
.. [Zhang2020] Y. Zhang, G. Parmigiani, W. E. Johnson. 2020. ComBat-Seq: batch
37
   effect adjustment for RNASeq count data. *NAR Genomics and Bioinformatics*,
38
   2(3).  :doi:`10.1093/nargab/lqaa078`
39