|
a |
|
b/docs/source/pycombat.rst |
|
|
1 |
============================= |
|
|
2 |
Batch Effect Correction Tools |
|
|
3 |
============================= |
|
|
4 |
|
|
|
5 |
Variability in datasets not only results from biological processes, but also |
|
|
6 |
from technical bias [Lander1999]_. |
|
|
7 |
InMoose offers a collection of tools for the correction of such technical bias, |
|
|
8 |
also called batch effects. |
|
|
9 |
|
|
|
10 |
Please refer to [Behdenna2023]_ for a detailed comparison of InMoose |
|
|
11 |
implementation with the original R implementations. |
|
|
12 |
|
|
|
13 |
.. toctree:: |
|
|
14 |
:maxdepth: 1 |
|
|
15 |
:caption: Batch effect correction per type of data: |
|
|
16 |
|
|
|
17 |
for microarray data <pycombatnorm> |
|
|
18 |
for RNASeq data <pycombatseq> |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
References |
|
|
22 |
========== |
|
|
23 |
|
|
|
24 |
.. [Behdenna2023] A. Behdenna, M. Colange, J. Haziza, A. Gema, G. Appé, C.-A. |
|
|
25 |
Azencott and A. Nordor. 2023. pyComBat, a Python tool for batch effects |
|
|
26 |
correction in high-throughput molecular data using empirical Bayes methods. |
|
|
27 |
*BMC Bioinformatics* 7;24(1):459. :doi:`10.1186/s12859-023-05578-5` |
|
|
28 |
|
|
|
29 |
.. [Johnson2007] W. E. Johnson, C. Li, A. Rabinovic. 2007. Adjusting batch |
|
|
30 |
effects in microarray expression data using empirical Bayes methods. |
|
|
31 |
*Biostatistics*, 8, 118–12. :doi:`10.1093/biostatistics/kxj037` |
|
|
32 |
|
|
|
33 |
.. [Lander1999] E. S. Lander. 1999. Array of hope. *Nature Genetics*, 21(1 |
|
|
34 |
Suppl), 3-4. :doi:`10.1038/4427` |
|
|
35 |
|
|
|
36 |
.. [Zhang2020] Y. Zhang, G. Parmigiani, W. E. Johnson. 2020. ComBat-Seq: batch |
|
|
37 |
effect adjustment for RNASeq count data. *NAR Genomics and Bioinformatics*, |
|
|
38 |
2(3). :doi:`10.1093/nargab/lqaa078` |
|
|
39 |
|