[ea0fd6]: / docs / source / edgepy.rst

Download this file

126 lines (99 with data), 4.0 kB

edgepy

This module is a partial port in Python of the R Bioconductor edgeR package. Only the functionalities necessary to :func:`inmoose.pycombat.pycombat_seq` and differential expression analysis have been ported so far.

Differential Expression Analysis Example

We give below an example of how to use edgepy to perform a differential expression analysis on the pasilla dataset.

References

[Chen2016]Y. Chen, A.T.L Lun, G.K. Smyth. 2016. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 5, 1438. :doi:`10.12688/f1000research.8987.2`
[Gibbons1975]J.D. Gibbons, J.W. Pratt. 1975. P-values: interpretation and methodology. The American Statistician 29, 20-25. :doi:`10.1080/00031305.1975.10479106`
[Lun2016]A.T.L. Lun, Y. Chen, G.K. Smyth. 2016. It's DE-licious: a recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods in Molecular Biology 1418, 391-416. :doi:`10.1007/978-1-4939-3578-9_19`
[Lund2012]S.P. Lund, D. Nettleton, D.J. McCarthy, G.K. Smyth. 2012. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Applications in Genetics and Molecular Biology Volume 11, Issue 5, Article 8. :doi:`10.1515/1544-6115.1826`
[Lun2017]A.T.L. Lun, G.K. Smyth. 2017. No counts, no variance: allowing for loss of degrees of freedom when assessing biological variability from RNA-seq data. Statistical Applications in Genetics and Molecular Biology 16(2), 83-93. :doi:`10.1515/sagmb-2017-0010`
[McCarthy2012]D. J. McCarthy, Y. Chen, G. K. Smyth. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. :doi:`10.1093/nar/gks042`
[Phipson2016]B. Phipson, S. Lee, I.J. Majewski, W. S. Alexander, G.K. Smyth. 2016. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963. :doi:`10.1214/16-AOAS920`
[Robinson2008]M.D. Robinson, g.K. Smyth. 2008. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321-332. :doi:`10.1093/biostatistics/kxm030`

Code documentation