#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 25 20:29:36 2019
@author: wanxiang.shen@u.nus.edu
main aggmap code
"""
from aggmap.utils.logtools import print_info, print_warn, print_error
from aggmap.utils.matrixopt import Scatter2Grid, Scatter2Array, smartpadding
from aggmap.utils import vismap, summary, calculator
from sklearn.cluster import AgglomerativeClustering
from sklearn.manifold import TSNE, MDS
from sklearn.utils import shuffle
from joblib import Parallel, delayed, load, dump
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import fcluster, linkage, dendrogram
import matplotlib.pylab as plt
import seaborn as sns
from umap import UMAP
from tqdm import tqdm
from copy import copy
import pandas as pd
import numpy as np
import os
class Base:
def __init__(self):
pass
def _save(self, filename):
return dump(self, filename)
def _load(self, filename):
return load(filename)
def MinMaxScaleClip(self, x, xmin, xmax):
scaled = (x - xmin) / ((xmax - xmin) + 1e-8)
return scaled
def StandardScaler(self, x, xmean, xstd):
return (x-xmean) / (xstd + 1e-8)
def _cluster_model2linkage_matrix(model):
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_):
current_count = 0
for child_idx in merge:
if child_idx < n_samples:
current_count += 1 # leaf node
else:
current_count += counts[child_idx - n_samples]
counts[i] = current_count
linkage_matrix = np.column_stack([model.children_, model.distances_,
counts]).astype(float)
return linkage_matrix
class AggMap(Base):
'''
Note: t-SNE initialize method should be changed into 'pca': https://www.nature.com/articles/s41587-020-00809-z
>>> mp = AggMap(dfx)
>>> mp.fit(emb_method = 'tsne', init = 'pca')
'''
def __init__(self,
dfx,
metric = 'correlation',
):
"""
paramters
-----------------
dfx: pandas DataFrame
metric: {'cosine', 'correlation', 'euclidean', 'jaccard', 'hamming', 'dice'}, default: 'correlation', measurement of feature distance
"""
assert type(dfx) == pd.core.frame.DataFrame, 'input dfx mush be pandas DataFrame!'
super().__init__()
self.metric = metric
self.isfit = False
self.alist = dfx.columns.tolist()
self.ftype = 'feature points'
## calculating distance
print_info('Calculating distance ...')
D = calculator.pairwise_distance(dfx.values, n_cpus=16, method=metric)
D = np.nan_to_num(D,copy=False)
D_ = squareform(D)
self.info_distance = D_.clip(0, np.inf)
## statistic info
S = summary.Summary(n_jobs = 10)
res= []
for i in tqdm(range(dfx.shape[1]), ascii=True):
r = S._statistics_one(dfx.values, i)
res.append(r)
dfs = pd.DataFrame(res, index = self.alist)
self.info_scale = dfs
print_info('Applying the Agglomerative Clustering ...')
cluster_model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)
cluster_model.fit(dfx.values.T)
self._intrinsic_Z = _cluster_model2linkage_matrix(cluster_model)
def _fit_embedding(self,
dist_matrix,
method = 'umap',
n_components = 2,
random_state = 32,
verbose = 2,
n_neighbors = 15,
min_dist = 0.1,
**kwargs):
"""
parameters
-----------------
dist_matrix: distance matrix to fit
method: {'tsne', 'umap', 'mds'}, algorithm to embedd high-D to 2D
kwargs: the extra parameters for the conresponding algorithm
"""
if 'metric' in kwargs.keys():
metric = kwargs.get('metric')
kwargs.pop('metric')
else:
metric = 'precomputed'
if method == 'tsne':
embedded = TSNE(n_components=n_components,
random_state=random_state,
metric = metric,
verbose = verbose,
**kwargs)
elif method == 'umap':
embedded = UMAP(n_components = n_components,
n_neighbors = n_neighbors,
min_dist = min_dist,
verbose = verbose,
random_state=random_state,
metric = metric, **kwargs)
elif method =='mds':
if 'metric' in kwargs.keys():
kwargs.pop('metric')
if 'dissimilarity' in kwargs.keys():
dissimilarity = kwargs.get('dissimilarity')
kwargs.pop('dissimilarity')
else:
dissimilarity = 'precomputed'
embedded = MDS(metric = True,
n_components= n_components,
verbose = verbose,
dissimilarity = dissimilarity,
random_state = random_state, **kwargs)
embedded = embedded.fit(dist_matrix)
return embedded
def fit(self,
feature_group_list = [],
cluster_channels = 5,
var_thr = -1,
split_channels = True,
fmap_type = 'grid',
fmap_shape = None,
emb_method = 'umap',
min_dist = 0.1,
n_neighbors = 15,
verbose = 2,
random_state = 32,
group_color_dict = {},
lnk_method = 'ward',
**kwargs):
"""
parameters
-----------------
feature_group_list: list of the group name for each feature point
cluster_channels: int, number of the channels(clusters) if feature_group_list is empty
var_thr: float, defalt is -1, meaning that feature will be included only if the conresponding variance larger than this value. Since some of the feature has pretty low variances, we can remove them by increasing this threshold
split_channels: bool, if True, outputs will split into various channels using the types of feature
fmap_type:{'scatter', 'grid'}, default: 'gird', if 'scatter', will return a scatter mol map without an assignment to a grid
fmap_shape: None or tuple, size of molmap, only works when fmap_type is 'scatter', if None, the size of feature map will be calculated automatically
emb_method: {'tsne', 'umap', 'mds'}, algorithm to embedd high-D to 2D
group_color_dict: dict of the group colors, keys are the group names, values are the colors
lnk_method: {'ward','complete', 'average', 'single'}, linkage method
kwargs: the extra parameters for the conresponding embedding method
"""
if 'n_components' in kwargs.keys():
kwargs.pop('n_components')
## embedding into a 2d
assert emb_method in ['tsne', 'umap', 'mds'], 'No Such Method Supported: %s' % emb_method
assert fmap_type in ['scatter', 'grid'], 'No Such Feature Map Type Supported: %s' % fmap_type
self.var_thr = var_thr
self.split_channels = split_channels
self.fmap_type = fmap_type
self.fmap_shape = fmap_shape
self.emb_method = emb_method
self.lnk_method = lnk_method
if fmap_shape != None:
assert len(fmap_shape) == 2, "fmap_shape must be a tuple with two elements!"
# flist and distance
flist = self.info_scale[self.info_scale['var'] > self.var_thr].index.tolist()
dfd = pd.DataFrame(squareform(self.info_distance),
index=self.alist,
columns=self.alist)
dist_matrix = dfd.loc[flist][flist]
self.flist = flist
self.x_mean = self.info_scale['mean'].values
self.x_std = self.info_scale['std'].values
self.x_min = self.info_scale['min'].values
self.x_max = self.info_scale['max'].values
#bitsinfo
dfb = pd.DataFrame(self.alist, columns = ['IDs'])
if feature_group_list != []:
self.Z = self._intrinsic_Z
assert len(feature_group_list) == len(self.alist), "the length of the input group list is not equal to length of the feature list"
self.cluster_channels = len(set(feature_group_list))
self.feature_group_list = feature_group_list
dfb['Subtypes'] = feature_group_list
if set(feature_group_list).issubset(set(group_color_dict.keys())):
self.group_color_dict = group_color_dict
dfb['colors'] = dfb['Subtypes'].map(group_color_dict)
else:
unique_types = dfb['Subtypes'].unique()
color_list = sns.color_palette("hsv", len(unique_types)).as_hex()
group_color_dict = dict(zip(unique_types, color_list))
dfb['colors'] = dfb['Subtypes'].map(group_color_dict)
self.group_color_dict = group_color_dict
else:
self.cluster_channels = cluster_channels
print_info('applying hierarchical clustering to obtain group information ...')
if self.lnk_method != 'ward':
Z = linkage(squareform(dfd.values), lnk_method)
else:
Z = self._intrinsic_Z
labels = fcluster(Z, cluster_channels, criterion='maxclust')
feature_group_list = ['cluster_%s' % str(i).zfill(2) for i in labels]
dfb['Subtypes'] = feature_group_list
dfb = dfb.sort_values('Subtypes')
unique_types = dfb['Subtypes'].unique()
if not set(unique_types).issubset(set(group_color_dict.keys())):
color_list = sns.color_palette("hsv", len(unique_types)).as_hex()
group_color_dict = dict(zip(unique_types, color_list))
dfb['colors'] = dfb['Subtypes'].map(group_color_dict)
self.group_color_dict = group_color_dict
self.Z = Z
self.feature_group_list = feature_group_list
self.bitsinfo = dfb
colormaps = dfb.set_index('Subtypes')['colors'].to_dict()
colormaps.update({'NaN': '#000000'})
self.colormaps = colormaps
if fmap_type == 'grid':
S = Scatter2Grid()
else:
if fmap_shape == None:
N = len(self.flist)
l = np._int(np.sqrt(N))*2
fmap_shape = (l, l)
S = Scatter2Array(fmap_shape)
self._S = S
## 2d embedding first
embedded = self._fit_embedding(dist_matrix,
method = emb_method,
n_neighbors = n_neighbors,
random_state = random_state,
min_dist = min_dist,
verbose = verbose,
n_components = 2, **kwargs)
self.embedded = embedded
df = pd.DataFrame(embedded.embedding_, index = self.flist,columns=['x', 'y'])
typemap = self.bitsinfo.set_index('IDs')
df = df.join(typemap)
df['Channels'] = df['Subtypes']
self.df_embedding = df
if self.fmap_type == 'scatter':
## naive scatter algorithm
print_info('Applying naive scatter feature map...')
self._S.fit(self.df_embedding, self.split_channels, channel_col = 'Channels')
print_info('Finished')
else:
## linear assignment algorithm
print_info('Applying grid feature map(assignment), this may take several minutes(1~30 min)')
self._S.fit(self.df_embedding, self.split_channels, channel_col = 'Channels')
print_info('Finished')
## fit flag
self.isfit = True
if self.fmap_shape == None:
self.fmap_shape = self._S.fmap_shape
else:
m, n = self.fmap_shape
p, q = self._S.fmap_shape
assert (m >= p) & (n >=q), "fmap_shape's width must >= %s, height >= %s " % (p, q)
return self
def transform(self,
arr_1d,
scale = True,
scale_method = 'minmax',
fillnan = 0):
"""
parameters
--------------------
arr_1d: 1d numpy array feature points
scale: bool, if True, we will apply MinMax scaling by the precomputed values
scale_method: {'minmax', 'standard'}
fillnan: fill nan value, default: 0
"""
if not self.isfit:
print_error('please fit first!')
return
if scale:
if scale_method == 'standard':
arr_1d = self.StandardScaler(arr_1d, self.x_mean, self.x_std)
else:
arr_1d = self.MinMaxScaleClip(arr_1d, self.x_min, self.x_max)
df = pd.DataFrame(arr_1d).T
df.columns = self.alist
df = df[self.flist]
vector_1d = df.values[0] #shape = (N, )
fmap = self._S.transform(vector_1d)
p, q, c = fmap.shape
if self.fmap_shape != None:
m, n = self.fmap_shape
if (m > p) | (n > q):
fps = []
for i in range(c):
fp = smartpadding(fmap[:,:,i], self.fmap_shape)
fps.append(fp)
fmap = np.stack(fps, axis=-1)
return np.nan_to_num(fmap, nan = fillnan)
def batch_transform(self,
array_2d,
scale = True,
scale_method = 'minmax',
n_jobs=4,
fillnan = 0):
"""
parameters
--------------------
array_2d: 2D numpy array feature points, M(samples) x N(feature ponits)
scale: bool, if True, we will apply MinMax scaling by the precomputed values
scale_method: {'minmax', 'standard'}
n_jobs: number of parallel
fillnan: fill nan value, default: 0
"""
if not self.isfit:
print_error('please fit first!')
return
assert type(array_2d) == np.ndarray, 'input must be numpy ndarray!'
assert array_2d.ndim == 2, 'input must be 2-D numpy array!'
P = Parallel(n_jobs=n_jobs)
res = P(delayed(self.transform)(arr_1d,
scale,
scale_method,
fillnan) for arr_1d in tqdm(array_2d, ascii=True))
X = np.stack(res)
return X
def plot_scatter(self, htmlpath='./', htmlname=None, radius = 2, enabled_data_labels = False):
"""radius: the size of the scatter, must be int"""
df_scatter, H_scatter = vismap.plot_scatter(self,
htmlpath=htmlpath,
htmlname=htmlname,
radius = radius,
enabled_data_labels = enabled_data_labels)
self.df_scatter = df_scatter
return H_scatter
def plot_grid(self, htmlpath='./', htmlname=None, enabled_data_labels = False):
if self.fmap_type != 'grid':
return
df_grid, H_grid = vismap.plot_grid(self,
htmlpath=htmlpath,
htmlname=htmlname,
enabled_data_labels = enabled_data_labels)
self.df_grid = df_grid
return H_grid
def plot_tree(self, figsize=(16,8), add_leaf_labels = True, leaf_font_size = 18, leaf_rotation = 90):
fig = plt.figure(figsize=figsize)
Z = self.Z
D_leaf_colors = self.bitsinfo['colors'].to_dict()
link_cols = {}
for i, i12 in enumerate(Z[:,:2].astype(int)):
c1, c2 = (link_cols[x] if x > len(Z) else D_leaf_colors[x] for x in i12)
link_cols[i+1+len(Z)] = c1
if add_leaf_labels:
labels = self.alist
else:
labels = None
P =dendrogram(Z, labels = labels,
leaf_rotation = leaf_rotation,
leaf_font_size = leaf_font_size,
link_color_func=lambda x: link_cols[x])
return fig
def copy(self):
return copy(self)
def load(self, filename):
return self._load(filename)
def save(self, filename):
return self._save(filename)