[9e8054]: / aggmap / utils / summary.py

Download this file

93 lines (65 with data), 2.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 17 16:54:12 2019
@author: wanxiang.shen@u.nus.edu
@usecase: statistic features' distribution
"""
import numpy as np
import pandas as pd
from joblib import Parallel, delayed
from tqdm import tqdm
from aggmap.utils.multiproc import MultiProcessUnorderedBarRun
class Summary:
def __init__(self, n_jobs=1):
'''
n_jobs: number of paralleles
'''
self.n_jobs = n_jobs
def _statistics_one(self, data, i):
onefeat = data[:,i]
onefeat = onefeat[~np.isnan(onefeat)]
onefeat = onefeat[~np.isinf(onefeat)]
s = pd.Series(onefeat)
if len(s) != 0:
maxv = s.max()
minv = s.min()
# using 0.8*(1-0.8) as a threshold to exclude feature
var = s.var()
std = s.std()
mean = s.mean()
med = s.median()
#skewness gt 0.75 will be log transformed
skewness = s.skew()
mode = s.mode().iloc[0]
else:
maxv = np.nan
minv = np.nan
var = np.nan
std = np.nan
mean = np.nan
med = np.nan
skewness = np.nan
mode = np.nan
del onefeat
return {'index':i, 'max':maxv, 'mean':mean, 'min':minv, 'median':med,
'mode':mode, 'skewness':skewness, 'std':std, 'var': var}
def fit(self, data, backend = 'threading', **kwargs):
'''
Parameters
----------
data: np.memmap or np.array
'''
P = Parallel(n_jobs=self.n_jobs, backend = backend, **kwargs)
res = P(delayed(self._statistics_one)(data,i) for i in tqdm(range(data.shape[1]), ascii=True))
return pd.DataFrame(res)
def _func(i):
S = Summary()
return S._statistics_one(DATA, i)
def Summary2(data, n_jobs):
global DATA, _func
DATA = data
res = MultiProcessUnorderedBarRun(_func, list(range(data.shape[1])), n_jobs)
df = pd.DataFrame(res)
dfres = df.sort_values('index').set_index('index')
return dfres