[d01132]: / bin / train_protein_predictor.py

Download this file

337 lines (303 with data), 11.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""
Script for training a protein predictor
"""
import os
import sys
import logging
import argparse
import copy
import functools
import itertools
import collections
from typing import *
import json
import numpy as np
import pandas as pd
from scipy import sparse
import scanpy as sc
import anndata as ad
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import skorch
import skorch.helper
torch.backends.cudnn.deterministic = True # For reproducibility
torch.backends.cudnn.benchmark = False
SRC_DIR = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "babel"
)
assert os.path.isdir(SRC_DIR)
sys.path.append(SRC_DIR)
MODELS_DIR = os.path.join(SRC_DIR, "models")
assert os.path.isdir(MODELS_DIR)
sys.path.append(MODELS_DIR)
import sc_data_loaders
import autoencoders
import loss_functions
import model_utils
from protein_utils import LOSS_DICT, OPTIM_DICT, ACT_DICT
import utils
from train_model import plot_loss_history
logging.basicConfig(level=logging.INFO)
def load_rna_files(
rna_counts_fnames: List[str], model_dir: str, transpose: bool = True
) -> ad.AnnData:
"""Load the RNA files in, filling in unmeasured genes as necessary"""
# Find the genes that the model understands
rna_genes_list_fname = os.path.join(model_dir, "rna_genes.txt")
assert os.path.isfile(
rna_genes_list_fname
), f"Cannot find RNA genes file: {rna_genes_list_fname}"
learned_rna_genes = utils.read_delimited_file(rna_genes_list_fname)
assert isinstance(learned_rna_genes, list)
assert utils.is_all_unique(
learned_rna_genes
), "Learned genes list contains duplicates"
temp_ad = utils.sc_read_multi_files(
rna_counts_fnames,
feature_type="Gene Expression",
transpose=transpose,
join="outer",
)
logging.info(f"Read input RNA files for {temp_ad.shape}")
temp_ad.X = utils.ensure_arr(temp_ad.X)
# Filter for mouse genes and remove human/mouse prefix
temp_ad.var_names_make_unique()
kept_var_names = [
vname for vname in temp_ad.var_names if not vname.startswith("MOUSE_")
]
if len(kept_var_names) != temp_ad.n_vars:
temp_ad = temp_ad[:, kept_var_names]
temp_ad.var = pd.DataFrame(index=[v.strip("HUMAN_") for v in kept_var_names])
# Expand adata to span all genes
# Initiating as a sparse matrix doesn't allow vectorized building
intersected_genes = set(temp_ad.var_names).intersection(learned_rna_genes)
assert intersected_genes, "No overlap between learned and input genes!"
expanded_mat = np.zeros((temp_ad.n_obs, len(learned_rna_genes)))
skip_count = 0
for gene in intersected_genes:
dest_idx = learned_rna_genes.index(gene)
src_idx = temp_ad.var_names.get_loc(gene)
if not isinstance(src_idx, int):
logging.warn(f"Got multiple source matches for {gene}, skipping")
skip_count += 1
continue
v = utils.ensure_arr(temp_ad.X[:, src_idx]).flatten()
expanded_mat[:, dest_idx] = v
if skip_count:
logging.warning(
f"Skipped {skip_count}/{len(intersected_genes)} genes due to multiple matches"
)
expanded_mat = sparse.csr_matrix(expanded_mat) # Compress
retval = ad.AnnData(
expanded_mat, obs=temp_ad.obs, var=pd.DataFrame(index=learned_rna_genes)
)
return retval
def build_parser():
"""Build CLI parser"""
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--rnaCounts",
type=str,
nargs="*",
required=True,
help="file containing raw RNA counts",
)
parser.add_argument(
"--proteinCounts",
type=str,
nargs="*",
required=True,
help="file containing raw protein counts",
)
parser.add_argument(
"--encoder", required=True, type=str, help="Model folder to find encoder"
)
parser.add_argument(
"--outdir",
type=str,
default=os.getcwd(),
help="Output directory for model, defaults to current dir",
)
parser.add_argument(
"--clusterres",
type=float,
default=1.5,
help="Cluster resolution for train/valid/test splits",
)
parser.add_argument(
"--validcluster", type=int, default=0, help="Cluster ID to use as valid cluster"
)
parser.add_argument(
"--testcluster", type=int, default=1, help="Cluster ID to use as test cluster"
)
parser.add_argument(
"--preprocessonly",
action="store_true",
help="Preprocess data only, do not train model",
)
parser.add_argument(
"--act",
type=str,
choices=ACT_DICT.keys(),
default="prelu",
help="Activation function",
)
parser.add_argument(
"--loss", type=str, choices=LOSS_DICT.keys(), default="L1", help="Loss"
)
parser.add_argument(
"--optim", type=str, choices=OPTIM_DICT.keys(), default="adam", help="Optimizer"
)
parser.add_argument("--interdim", type=int, default=64, help="Intermediate dim")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--bs", type=int, default=512, help="Batch size")
parser.add_argument(
"--epochs", type=int, default=600, help="Maximum number of epochs to train"
)
parser.add_argument(
"--notrans",
action="store_true",
help="Do not transpose (already in row obs form)",
)
parser.add_argument("--device", default=0, type=int, help="Device for training")
return parser
def main():
"""Train a protein predictor"""
parser = build_parser()
args = parser.parse_args()
# Create output directory
if not os.path.isdir(args.outdir):
os.makedirs(args.outdir)
# Specify output log file
logger = logging.getLogger()
fh = logging.FileHandler(os.path.join(args.outdir, "training.log"))
fh.setLevel(logging.INFO)
logger.addHandler(fh)
# Log parameters
for arg in vars(args):
logging.info(f"Parameter {arg}: {getattr(args, arg)}")
with open(os.path.join(args.outdir, "params.json"), "w") as sink:
json.dump(vars(args), sink, indent=4)
# Load the model
pretrained_net = model_utils.load_model(args.encoder, device=args.device)
# Load in some files
rna_genes = utils.read_delimited_file(os.path.join(args.encoder, "rna_genes.txt"))
atac_bins = utils.read_delimited_file(os.path.join(args.encoder, "atac_bins.txt"))
# Read in the RNA
rna_data_kwargs = copy.copy(sc_data_loaders.TENX_PBMC_RNA_DATA_KWARGS)
rna_data_kwargs["cluster_res"] = args.clusterres
rna_data_kwargs["fname"] = args.rnaCounts
rna_data_kwargs["reader"] = lambda x: load_rna_files(
x, args.encoder, transpose=not args.notrans
)
# Construct data folds
full_sc_rna_dataset = sc_data_loaders.SingleCellDataset(
valid_cluster_id=args.validcluster,
test_cluster_id=args.testcluster,
**rna_data_kwargs,
)
full_sc_rna_dataset.data_raw.write_h5ad(os.path.join(args.outdir, "full_rna.h5ad"))
train_valid_test_dsets = []
for mode in ["all", "train", "valid", "test"]:
logging.info(f"Constructing {mode} dataset")
sc_rna_dataset = sc_data_loaders.SingleCellDatasetSplit(
full_sc_rna_dataset, split=mode
)
sc_rna_dataset.data_raw.write_h5ad(
os.path.join(args.outdir, f"{mode}_rna.h5ad")
) # Write RNA input
sc_atac_dummy_dataset = sc_data_loaders.DummyDataset(
shape=len(atac_bins), length=len(sc_rna_dataset)
)
# RNA and fake ATAC
sc_dual_dataset = sc_data_loaders.PairedDataset(
sc_rna_dataset,
sc_atac_dummy_dataset,
flat_mode=True,
)
# encoded(RNA) as "x" and RNA + fake ATAC as "y"
sc_rna_encoded_dataset = sc_data_loaders.EncodedDataset(
sc_dual_dataset, model=pretrained_net, input_mode="RNA"
)
sc_rna_encoded_dataset.encoded.write_h5ad(
os.path.join(args.outdir, f"{mode}_encoded.h5ad")
)
sc_protein_dataset = sc_data_loaders.SingleCellProteinDataset(
args.proteinCounts,
obs_names=sc_rna_dataset.obs_names,
transpose=not args.notrans,
)
sc_protein_dataset.data_raw.write_h5ad(
os.path.join(args.outdir, f"{mode}_protein.h5ad")
) # Write protein
# x = 16 dimensional encoded layer, y = 25 dimensional protein array
sc_rna_protein_dataset = sc_data_loaders.SplicedDataset(
sc_rna_encoded_dataset, sc_protein_dataset
)
_temp = sc_rna_protein_dataset[0] # ensure calling works
train_valid_test_dsets.append(sc_rna_protein_dataset)
# Unpack and do sanity checks
_, sc_rna_prot_train, sc_rna_prot_valid, sc_rna_prot_test = train_valid_test_dsets
x, y, z = sc_rna_prot_train[0], sc_rna_prot_valid[0], sc_rna_prot_test[0]
assert (
x[0].shape == y[0].shape == z[0].shape
), f"Got mismatched shapes: {x[0].shape} {y[0].shape} {z[0].shape}"
assert (
x[1].shape == y[1].shape == z[1].shape
), f"Got mismatched shapes: {x[1].shape} {y[1].shape} {z[1].shape}"
protein_markers = list(sc_protein_dataset.data_raw.var_names)
with open(os.path.join(args.outdir, "protein_proteins.txt"), "w") as sink:
sink.write("\n".join(protein_markers) + "\n")
assert len(
utils.read_delimited_file(os.path.join(args.outdir, "protein_proteins.txt"))
) == len(protein_markers)
logging.info(f"Predicting on {len(protein_markers)} proteins")
if args.preprocessonly:
return
protein_decoder_skorch = skorch.NeuralNet(
module=autoencoders.Decoder,
module__num_units=16,
module__intermediate_dim=args.interdim,
module__num_outputs=len(protein_markers),
module__activation=ACT_DICT[args.act],
module__final_activation=nn.Identity(),
# module__final_activation=nn.Linear(
# len(protein_markers), len(protein_markers), bias=True
# ), # Paper uses identity activation instead
lr=args.lr,
criterion=LOSS_DICT[args.loss], # Other works use L1 loss
optimizer=OPTIM_DICT[args.optim],
batch_size=args.bs,
max_epochs=args.epochs,
callbacks=[
skorch.callbacks.EarlyStopping(patience=15),
skorch.callbacks.LRScheduler(
policy=torch.optim.lr_scheduler.ReduceLROnPlateau,
patience=5,
factor=0.1,
min_lr=1e-6,
# **model_utils.REDUCE_LR_ON_PLATEAU_PARAMS,
),
skorch.callbacks.GradientNormClipping(gradient_clip_value=5),
skorch.callbacks.Checkpoint(
dirname=args.outdir,
fn_prefix="net_",
monitor="valid_loss_best",
),
],
train_split=skorch.helper.predefined_split(sc_rna_prot_valid),
iterator_train__num_workers=8,
iterator_valid__num_workers=8,
device=utils.get_device(args.device),
)
protein_decoder_skorch.fit(sc_rna_prot_train, y=None)
# Plot the loss history
fig = plot_loss_history(
protein_decoder_skorch.history, os.path.join(args.outdir, "loss.pdf")
)
if __name__ == "__main__":
main()