[d01132]: / bin / predict_model.py

Download this file

616 lines (562 with data), 22.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
"""
Code for evaluating a model's ability to generalize to cells that it wasn't trained on.
Can only be used to evalute within a species.
Generates raw predictions of data modality transfer, and optionally, plots.
"""
import os
import sys
from typing import *
import functools
import logging
import argparse
import copy
import scipy
import anndata as ad
import scanpy as sc
import torch
import skorch
SRC_DIR = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))),
"babel",
)
assert os.path.isdir(SRC_DIR)
sys.path.append(SRC_DIR)
import sc_data_loaders
import loss_functions
import model_utils
import plot_utils
import adata_utils
import utils
from models import autoencoders
DATA_DIR = os.path.join(os.path.dirname(SRC_DIR), "data")
assert os.path.isdir(DATA_DIR)
logging.basicConfig(level=logging.INFO)
DATASET_NAME = ""
def do_evaluation_rna_from_rna(
spliced_net,
sc_dual_full_dataset,
gene_names: str,
atac_names: str,
outdir: str,
ext: str,
marker_genes: List[str],
prefix: str = "",
):
"""
Evaluate the given network on the dataset
"""
# Do inference and plotting
### RNA > RNA
logging.info("Inferring RNA from RNA...")
sc_rna_full_preds = spliced_net.translate_1_to_1(sc_dual_full_dataset)
sc_rna_full_preds_anndata = sc.AnnData(
sc_rna_full_preds,
obs=sc_dual_full_dataset.dataset_x.data_raw.obs,
)
sc_rna_full_preds_anndata.var_names = gene_names
logging.info("Writing RNA from RNA")
sc_rna_full_preds_anndata.write(
os.path.join(outdir, f"{prefix}_rna_rna_adata.h5ad".strip("_"))
)
if hasattr(sc_dual_full_dataset.dataset_x, "size_norm_counts") and ext is not None:
logging.info("Plotting RNA from RNA")
plot_utils.plot_scatter_with_r(
sc_dual_full_dataset.dataset_x.size_norm_counts.X,
sc_rna_full_preds,
one_to_one=True,
logscale=True,
density_heatmap=True,
title=f"{DATASET_NAME} RNA > RNA".strip(),
fname=os.path.join(outdir, f"{prefix}_rna_rna_log.{ext}".strip("_")),
)
def do_evaluation_atac_from_rna(
spliced_net,
sc_dual_full_dataset,
gene_names: str,
atac_names: str,
outdir: str,
ext: str,
marker_genes: List[str],
prefix: str = "",
):
### RNA > ATAC
logging.info("Inferring ATAC from RNA")
sc_rna_atac_full_preds = spliced_net.translate_1_to_2(sc_dual_full_dataset)
sc_rna_atac_full_preds_anndata = sc.AnnData(
scipy.sparse.csr_matrix(sc_rna_atac_full_preds),
obs=sc_dual_full_dataset.dataset_x.data_raw.obs,
)
sc_rna_atac_full_preds_anndata.var_names = atac_names
logging.info("Writing ATAC from RNA")
sc_rna_atac_full_preds_anndata.write(
os.path.join(outdir, f"{prefix}_rna_atac_adata.h5ad".strip("_"))
)
if hasattr(sc_dual_full_dataset.dataset_y, "data_raw") and ext is not None:
logging.info("Plotting ATAC from RNA")
plot_utils.plot_auroc(
utils.ensure_arr(sc_dual_full_dataset.dataset_y.data_raw.X).flatten(),
utils.ensure_arr(sc_rna_atac_full_preds).flatten(),
title_prefix=f"{DATASET_NAME} RNA > ATAC".strip(),
fname=os.path.join(outdir, f"{prefix}_rna_atac_auroc.{ext}".strip("_")),
)
# plot_utils.plot_auprc(
# utils.ensure_arr(sc_dual_full_dataset.dataset_y.data_raw.X).flatten(),
# utils.ensure_arr(sc_rna_atac_full_preds),
# title_prefix=f"{DATASET_NAME} RNA > ATAC".strip(),
# fname=os.path.join(outdir, f"{prefix}_rna_atac_auprc.{ext}".strip("_")),
# )
def do_evaluation_atac_from_atac(
spliced_net,
sc_dual_full_dataset,
gene_names: str,
atac_names: str,
outdir: str,
ext: str,
marker_genes: List[str],
prefix: str = "",
):
### ATAC > ATAC
logging.info("Inferring ATAC from ATAC")
sc_atac_full_preds = spliced_net.translate_2_to_2(sc_dual_full_dataset)
sc_atac_full_preds_anndata = sc.AnnData(
sc_atac_full_preds,
obs=sc_dual_full_dataset.dataset_y.data_raw.obs.copy(deep=True),
)
sc_atac_full_preds_anndata.var_names = atac_names
logging.info("Writing ATAC from ATAC")
# Infer marker bins
# logging.info("Getting marker bins for ATAC from ATAC")
# plot_utils.preprocess_anndata(sc_atac_full_preds_anndata)
# adata_utils.find_marker_genes(sc_atac_full_preds_anndata)
# inferred_marker_bins = adata_utils.flatten_marker_genes(
# sc_atac_full_preds_anndata.uns["rank_genes_leiden"]
# )
# logging.info(f"Found {len(inferred_marker_bins)} marker bins for ATAC from ATAC")
# with open(
# os.path.join(outdir, f"{prefix}_atac_atac_marker_bins.txt".strip("_")), "w"
# ) as sink:
# sink.write("\n".join(inferred_marker_bins) + "\n")
sc_atac_full_preds_anndata.write(
os.path.join(outdir, f"{prefix}_atac_atac_adata.h5ad".strip("_"))
)
if hasattr(sc_dual_full_dataset.dataset_y, "data_raw") and ext is not None:
logging.info("Plotting ATAC from ATAC")
plot_utils.plot_auroc(
utils.ensure_arr(sc_dual_full_dataset.dataset_y.data_raw.X).flatten(),
utils.ensure_arr(sc_atac_full_preds).flatten(),
title_prefix=f"{DATASET_NAME} ATAC > ATAC".strip(),
fname=os.path.join(outdir, f"{prefix}_atac_atac_auroc.{ext}".strip("_")),
)
# plot_utils.plot_auprc(
# utils.ensure_arr(sc_dual_full_dataset.dataset_y.data_raw.X).flatten(),
# utils.ensure_arr(sc_atac_full_preds).flatten(),
# title_prefix=f"{DATASET_NAME} ATAC > ATAC".strip(),
# fname=os.path.join(outdir, f"{prefix}_atac_atac_auprc.{ext}".strip("_")),
# )
# Remove some objects to free memory
del sc_atac_full_preds
del sc_atac_full_preds_anndata
def do_evaluation_rna_from_atac(
spliced_net,
sc_dual_full_dataset,
gene_names: str,
atac_names: str,
outdir: str,
ext: str,
marker_genes: List[str],
prefix: str = "",
):
### ATAC > RNA
logging.info("Inferring RNA from ATAC")
sc_atac_rna_full_preds = spliced_net.translate_2_to_1(sc_dual_full_dataset)
# Seurat expects everything to be sparse
# https://github.com/satijalab/seurat/issues/2228
sc_atac_rna_full_preds_anndata = sc.AnnData(
sc_atac_rna_full_preds,
obs=sc_dual_full_dataset.dataset_y.data_raw.obs.copy(deep=True),
)
sc_atac_rna_full_preds_anndata.var_names = gene_names
logging.info("Writing RNA from ATAC")
# Seurat also expects the raw attribute to be populated
sc_atac_rna_full_preds_anndata.raw = sc_atac_rna_full_preds_anndata.copy()
sc_atac_rna_full_preds_anndata.write(
os.path.join(outdir, f"{prefix}_atac_rna_adata.h5ad".strip("_"))
)
# sc_atac_rna_full_preds_anndata.write_csvs(
# os.path.join(outdir, f"{prefix}_atac_rna_constituent_csv".strip("_")),
# skip_data=False,
# )
# sc_atac_rna_full_preds_anndata.to_df().to_csv(
# os.path.join(outdir, f"{prefix}_atac_rna_table.csv".strip("_"))
# )
# If there eixsts a ground truth RNA, do RNA plotting
if hasattr(sc_dual_full_dataset.dataset_x, "size_norm_counts") and ext is not None:
logging.info("Plotting RNA from ATAC")
plot_utils.plot_scatter_with_r(
sc_dual_full_dataset.dataset_x.size_norm_counts.X,
sc_atac_rna_full_preds,
one_to_one=True,
logscale=True,
density_heatmap=True,
title=f"{DATASET_NAME} ATAC > RNA".strip(),
fname=os.path.join(outdir, f"{prefix}_atac_rna_log.{ext}".strip("_")),
)
# Remove objects to free memory
del sc_atac_rna_full_preds
del sc_atac_rna_full_preds_anndata
def do_latent_evaluation(
spliced_net, sc_dual_full_dataset, outdir: str, prefix: str = ""
):
"""
Pull out latent space and write to file
"""
logging.info("Inferring latent representations")
encoded_from_rna, encoded_from_atac = spliced_net.get_encoded_layer(
sc_dual_full_dataset
)
if hasattr(sc_dual_full_dataset.dataset_x, "data_raw"):
encoded_from_rna_adata = sc.AnnData(
encoded_from_rna,
obs=sc_dual_full_dataset.dataset_x.data_raw.obs.copy(deep=True),
)
encoded_from_rna_adata.write(
os.path.join(outdir, f"{prefix}_rna_encoded_adata.h5ad".strip("_"))
)
if hasattr(sc_dual_full_dataset.dataset_y, "data_raw"):
encoded_from_atac_adata = sc.AnnData(
encoded_from_atac,
obs=sc_dual_full_dataset.dataset_y.data_raw.obs.copy(deep=True),
)
encoded_from_atac_adata.write(
os.path.join(outdir, f"{prefix}_atac_encoded_adata.h5ad".strip("_"))
)
def infer_reader(fname: str, mode: str = "atac") -> Callable:
"""Given a filename, infer the correct reader to use"""
assert mode in ["atac", "rna"], f"Unrecognized mode: {mode}"
if fname.endswith(".h5"):
if mode == "atac":
return functools.partial(utils.sc_read_10x_h5_ft_type, ft_type="Peaks")
else:
return utils.sc_read_10x_h5_ft_type
elif fname.endswith(".h5ad"):
return ad.read_h5ad
else:
raise ValueError(f"Unrecognized extension: {fname}")
def build_parser():
parser = argparse.ArgumentParser(
usage=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--checkpoint",
type=str,
nargs="*",
required=False,
default=[
os.path.join(model_utils.MODEL_CACHE_DIR, "cv_logsplit_01_model_only")
],
help="Checkpoint directory to load model from. If not given, automatically download and use a human pretrained model",
)
parser.add_argument("--prefix", type=str, default="net_", help="Checkpoint prefix")
parser.add_argument("--data", required=True, nargs="*", help="Data files")
parser.add_argument(
"--dataname", default="", help="Name of dataset to include in plot titles"
)
parser.add_argument(
"--outdir", type=str, required=True, help="Output directory for files and plots"
)
parser.add_argument(
"--genes",
type=str,
default="",
help="Genes that the model uses (inferred based on checkpoint dir if not given)",
)
parser.add_argument(
"--bins",
type=str,
default="",
help="ATAC bins that the model uses (inferred based on checkpoint dir if not given)",
)
parser.add_argument(
"--liftHg19toHg38",
action="store_true",
help="Liftover input ATAC bins from hg19 to hg38",
)
parser.add_argument("--device", type=str, default="0", help="Device to use")
parser.add_argument(
"--ext",
type=str,
default="pdf",
choices=["pdf", "png", "jpg"],
help="File format to use for plotting",
)
parser.add_argument(
"--noplot", action="store_true", help="Disable plotting, writing output only"
)
parser.add_argument(
"--transonly",
action="store_true",
help="Disable doing same-modality inference",
)
parser.add_argument(
"--skiprnasource", action="store_true", help="Skip analysis starting from RNA"
)
parser.add_argument(
"--skipatacsource", action="store_true", help="Skip analysis starting from ATAC"
)
parser.add_argument(
"--nofilter",
action="store_true",
help="Whether or not to perform filtering (note that we always discard cells with no expressed genes)",
)
return parser
def load_rna_files_for_eval(
data, checkpoint: str, rna_genes_list_fname: str = "", no_filter: bool = False
):
""" """
if not rna_genes_list_fname:
rna_genes_list_fname = os.path.join(checkpoint, "rna_genes.txt")
assert os.path.isfile(
rna_genes_list_fname
), f"Cannot find RNA genes file: {rna_genes_list_fname}"
rna_genes = utils.read_delimited_file(rna_genes_list_fname)
rna_data_kwargs = copy.copy(sc_data_loaders.TENX_PBMC_RNA_DATA_KWARGS)
if no_filter:
rna_data_kwargs = {
k: v for k, v in rna_data_kwargs.items() if not k.startswith("filt_")
}
# Always discard cells with no expressed genes
rna_data_kwargs["filt_cell_min_genes"] = 1
rna_data_kwargs["fname"] = data
reader_func = functools.partial(
utils.sc_read_multi_files,
reader=lambda x: sc_data_loaders.repool_genes(
utils.get_ad_reader(x, ft_type="Gene Expression")(x), rna_genes
),
)
rna_data_kwargs["reader"] = reader_func
try:
logging.info(f"Building RNA dataset with parameters: {rna_data_kwargs}")
sc_rna_full_dataset = sc_data_loaders.SingleCellDataset(
mode="skip",
**rna_data_kwargs,
)
assert all(
[x == y for x, y in zip(rna_genes, sc_rna_full_dataset.data_raw.var_names)]
), "Mismatched genes"
_temp = sc_rna_full_dataset[0] # Try that query works
# adata_utils.find_marker_genes(sc_rna_full_dataset.data_raw, n_genes=25)
# marker_genes = adata_utils.flatten_marker_genes(
# sc_rna_full_dataset.data_raw.uns["rank_genes_leiden"]
# )
marker_genes = []
# Write out the truth
except (AssertionError, IndexError) as e:
logging.warning(f"Error when reading RNA gene expression data from {data}: {e}")
logging.warning("Ignoring RNA data")
# Update length later
sc_rna_full_dataset = sc_data_loaders.DummyDataset(
shape=len(rna_genes), length=-1
)
marker_genes = []
return sc_rna_full_dataset, rna_genes, marker_genes
def load_atac_files_for_eval(
data: List[str],
checkpoint: str,
atac_bins_list_fname: str = "",
lift_hg19_to_hg39: bool = False,
predefined_split=None,
):
"""Load the ATAC files for evaluation"""
if not atac_bins_list_fname:
atac_bins_list_fname = os.path.join(checkpoint, "atac_bins.txt")
logging.info(f"Auto-set atac bins fname to {atac_bins_list_fname}")
assert os.path.isfile(
atac_bins_list_fname
), f"Cannot find ATAC bins file: {atac_bins_list_fname}"
atac_bins = utils.read_delimited_file(
atac_bins_list_fname
) # These are the bins we are using (i.e. the bins the model was trained on)
atac_data_kwargs = copy.copy(sc_data_loaders.TENX_PBMC_ATAC_DATA_KWARGS)
atac_data_kwargs["fname"] = data
atac_data_kwargs["cluster_res"] = 0 # Disable clustering
filt_atac_keys = [k for k in atac_data_kwargs.keys() if k.startswith("filt")]
for k in filt_atac_keys: # Reset filtering
atac_data_kwargs[k] = None
atac_data_kwargs["pool_genomic_interval"] = atac_bins
if not lift_hg19_to_hg39:
atac_data_kwargs["reader"] = functools.partial(
utils.sc_read_multi_files,
reader=lambda x: sc_data_loaders.repool_atac_bins(
infer_reader(data[0], mode="atac")(x),
atac_bins,
),
)
else: # Requires liftover
# Read, liftover, then repool
atac_data_kwargs["reader"] = functools.partial(
utils.sc_read_multi_files,
reader=lambda x: sc_data_loaders.repool_atac_bins(
sc_data_loaders.liftover_atac_adata(
# utils.sc_read_10x_h5_ft_type(x, "Peaks")
infer_reader(data[0], mode="atac")(x)
),
atac_bins,
),
)
try:
sc_atac_full_dataset = sc_data_loaders.SingleCellDataset(
mode="skip",
predefined_split=predefined_split if predefined_split else None,
**atac_data_kwargs,
)
_temp = sc_atac_full_dataset[0] # Try that query works
assert all(
[x == y for x, y in zip(atac_bins, sc_atac_full_dataset.data_raw.var_names)]
)
except AssertionError as err:
logging.warning(f"Error when reading ATAC data from {data}: {err}")
logging.warning("Ignoring ATAC data, returning dummy dataset instead")
sc_atac_full_dataset = sc_data_loaders.DummyDataset(
shape=len(atac_bins), length=-1
)
return sc_atac_full_dataset, atac_bins
def main():
parser = build_parser()
args = parser.parse_args()
logging.info(f"Evaluating: {' '.join(args.data)}")
global DATASET_NAME
DATASET_NAME = args.dataname
# Create output directory
if not os.path.isdir(args.outdir):
os.makedirs(args.outdir)
# Set up logging
logger = logging.getLogger()
fh = logging.FileHandler(os.path.join(args.outdir, "logging.log"), "w")
fh.setLevel(logging.INFO)
logger.addHandler(fh)
if args.checkpoint[0] == os.path.join(
model_utils.MODEL_CACHE_DIR, "cv_logsplit_01_model_only"
):
_ = model_utils.load_model() # Downloads if not downloaded
(sc_rna_full_dataset, rna_genes, marker_genes,) = load_rna_files_for_eval(
args.data, args.checkpoint[0], args.genes, no_filter=args.nofilter
)
if hasattr(sc_rna_full_dataset, "size_norm_counts"):
logging.info("Writing truth RNA size normalized counts")
sc_rna_full_dataset.size_norm_counts.write_h5ad(
os.path.join(args.outdir, "truth_rna.h5ad")
)
sc_atac_full_dataset, atac_bins = load_atac_files_for_eval(
args.data,
args.checkpoint[0],
args.bins,
args.liftHg19toHg38,
sc_rna_full_dataset if hasattr(sc_rna_full_dataset, "data_raw") else None,
)
# Write out the truth
if hasattr(sc_atac_full_dataset, "data_raw"):
logging.info("Writing truth ATAC binary counts")
sc_atac_full_dataset.data_raw.write_h5ad(
os.path.join(args.outdir, "truth_atac.h5ad")
)
if isinstance(sc_rna_full_dataset, sc_data_loaders.DummyDataset) and isinstance(
sc_atac_full_dataset, sc_data_loaders.DummyDataset
):
raise ValueError("Cannot proceed with two dummy datasets for both RNA and ATAC")
# Update the RNA counts if we do not actually have RNA data
if isinstance(sc_rna_full_dataset, sc_data_loaders.DummyDataset) and not isinstance(
sc_atac_full_dataset, sc_data_loaders.DummyDataset
):
sc_rna_full_dataset.length = len(sc_atac_full_dataset)
elif isinstance(
sc_atac_full_dataset, sc_data_loaders.DummyDataset
) and not isinstance(sc_rna_full_dataset, sc_data_loaders.DummyDataset):
sc_atac_full_dataset.length = len(sc_rna_full_dataset)
# Build the dual combined dataset
sc_dual_full_dataset = sc_data_loaders.PairedDataset(
sc_rna_full_dataset,
sc_atac_full_dataset,
flat_mode=True,
)
# Write some basic outputs related to variable and obs names
with open(os.path.join(args.outdir, "rna_genes.txt"), "w") as sink:
sink.write("\n".join(rna_genes) + "\n")
with open(os.path.join(args.outdir, "atac_bins.txt"), "w") as sink:
sink.write("\n".join(atac_bins) + "\n")
with open(os.path.join(args.outdir, "obs_names.txt"), "w") as sink:
sink.write("\n".join(sc_dual_full_dataset.obs_names))
for i, ckpt in enumerate(args.checkpoint):
# Dynamically determine the model we are looking at based on name
checkpoint_basename = os.path.basename(ckpt)
if checkpoint_basename.startswith("naive"):
logging.info(f"Inferred model to be naive")
model_class = autoencoders.NaiveSplicedAutoEncoder
else:
logging.info(f"Inferred model to be normal (non-naive)")
model_class = autoencoders.AssymSplicedAutoEncoder
prefix = "" if len(args.checkpoint) == 1 else f"model_{checkpoint_basename}"
spliced_net = model_utils.load_model(
ckpt,
prefix=args.prefix,
device=args.device,
)
do_latent_evaluation(
spliced_net=spliced_net,
sc_dual_full_dataset=sc_dual_full_dataset,
outdir=args.outdir,
prefix=prefix,
)
if (
isinstance(sc_rna_full_dataset, sc_data_loaders.SingleCellDataset)
and not args.skiprnasource
):
if not args.transonly:
do_evaluation_rna_from_rna(
spliced_net,
sc_dual_full_dataset,
rna_genes,
atac_bins,
args.outdir,
None if args.noplot else args.ext,
marker_genes,
prefix=prefix,
)
do_evaluation_atac_from_rna(
spliced_net,
sc_dual_full_dataset,
rna_genes,
atac_bins,
args.outdir,
None if args.noplot else args.ext,
marker_genes,
prefix=prefix,
)
if (
isinstance(sc_atac_full_dataset, sc_data_loaders.SingleCellDataset)
and not args.skipatacsource
):
do_evaluation_rna_from_atac(
spliced_net,
sc_dual_full_dataset,
rna_genes,
atac_bins,
args.outdir,
None if args.noplot else args.ext,
marker_genes,
prefix=prefix,
)
if not args.transonly:
do_evaluation_atac_from_atac(
spliced_net,
sc_dual_full_dataset,
rna_genes,
atac_bins,
args.outdir,
None if args.noplot else args.ext,
marker_genes,
prefix=prefix,
)
del spliced_net
if __name__ == "__main__":
main()