[d01132]: / bin / train_model.py

Download this file

538 lines (500 with data), 19.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
"""
Code to train a model
"""
import os
import sys
import logging
import argparse
import copy
import functools
import itertools
import numpy as np
import pandas as pd
import scipy.spatial
import scanpy as sc
import matplotlib.pyplot as plt
from skorch.helper import predefined_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import skorch
import skorch.helper
torch.backends.cudnn.deterministic = True # For reproducibility
torch.backends.cudnn.benchmark = False
SRC_DIR = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "babel"
)
assert os.path.isdir(SRC_DIR)
sys.path.append(SRC_DIR)
MODELS_DIR = os.path.join(SRC_DIR, "models")
assert os.path.isdir(MODELS_DIR)
sys.path.append(MODELS_DIR)
import sc_data_loaders
import adata_utils
import model_utils
import autoencoders
import loss_functions
import layers
import activations
import plot_utils
import utils
import metrics
import interpretation
logging.basicConfig(level=logging.INFO)
OPTIMIZER_DICT = {
"adam": torch.optim.Adam,
"rmsprop": torch.optim.RMSprop,
}
def build_parser():
"""Build argument parser"""
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
input_group = parser.add_mutually_exclusive_group(required=True)
input_group.add_argument(
"--data", "-d", type=str, nargs="*", help="Data files to train on",
)
input_group.add_argument(
"--snareseq",
action="store_true",
help="Data in SNAREseq format, use custom data loading logic for separated RNA ATC files",
)
input_group.add_argument(
"--shareseq",
nargs="+",
type=str,
choices=["lung", "skin", "brain"],
help="Load in the given SHAREseq datasets",
)
parser.add_argument(
"--nofilter",
action="store_true",
help="Whether or not to perform filtering (only applies with --data argument)",
)
parser.add_argument(
"--linear",
action="store_true",
help="Do clustering data splitting in linear instead of log space",
)
parser.add_argument(
"--clustermethod",
type=str,
choices=["leiden", "louvain"],
default="leiden",
help="Clustering method to determine data splits",
)
parser.add_argument(
"--validcluster", type=int, default=0, help="Cluster ID to use as valid cluster"
)
parser.add_argument(
"--testcluster", type=int, default=1, help="Cluster ID to use as test cluster"
)
parser.add_argument(
"--outdir", "-o", required=True, type=str, help="Directory to output to"
)
parser.add_argument(
"--naive",
"-n",
action="store_true",
help="Use a naive model instead of lego model",
)
parser.add_argument(
"--hidden", type=int, nargs="*", default=[16], help="Hidden dimensions"
)
parser.add_argument(
"--pretrain",
type=str,
default="",
help="params.pt file to use to warm initialize the model (instead of starting from scratch)",
)
parser.add_argument(
"--lossweight",
type=float,
nargs="*",
default=[1.33],
help="Relative loss weight",
)
parser.add_argument(
"--optim",
type=str,
default="adam",
choices=OPTIMIZER_DICT.keys(),
help="Optimizer to use",
)
parser.add_argument(
"--lr", "-l", type=float, default=[0.01], nargs="*", help="Learning rate"
)
parser.add_argument(
"--batchsize", "-b", type=int, nargs="*", default=[512], help="Batch size"
)
parser.add_argument(
"--earlystop", type=int, default=25, help="Early stopping after N epochs"
)
parser.add_argument(
"--seed", type=int, nargs="*", default=[182822], help="Random seed to use"
)
parser.add_argument("--device", default=0, type=int, help="Device to train on")
parser.add_argument(
"--ext",
type=str,
choices=["png", "pdf", "jpg"],
default="pdf",
help="Output format for plots",
)
return parser
def plot_loss_history(history, fname: str):
"""Create a plot of train valid loss"""
fig, ax = plt.subplots(dpi=300)
ax.plot(
np.arange(len(history)), history[:, "train_loss"], label="Train",
)
ax.plot(
np.arange(len(history)), history[:, "valid_loss"], label="Valid",
)
ax.legend()
ax.set(
xlabel="Epoch", ylabel="Loss",
)
fig.savefig(fname)
return fig
def main():
"""Run the script"""
parser = build_parser()
args = parser.parse_args()
args.outdir = os.path.abspath(args.outdir)
if not os.path.isdir(os.path.dirname(args.outdir)):
os.makedirs(os.path.dirname(args.outdir))
# Specify output log file
logger = logging.getLogger()
fh = logging.FileHandler(f"{args.outdir}_training.log", "w")
fh.setLevel(logging.INFO)
logger.addHandler(fh)
# Log parameters and pytorch version
if torch.cuda.is_available():
logging.info(f"PyTorch CUDA version: {torch.version.cuda}")
for arg in vars(args):
logging.info(f"Parameter {arg}: {getattr(args, arg)}")
# Borrow parameters
logging.info("Reading RNA data")
if args.snareseq:
rna_data_kwargs = copy.copy(sc_data_loaders.SNARESEQ_RNA_DATA_KWARGS)
elif args.shareseq:
logging.info(f"Loading in SHAREseq RNA data for: {args.shareseq}")
rna_data_kwargs = copy.copy(sc_data_loaders.SNARESEQ_RNA_DATA_KWARGS)
rna_data_kwargs["fname"] = None
rna_data_kwargs["reader"] = None
rna_data_kwargs["cell_info"] = None
rna_data_kwargs["gene_info"] = None
rna_data_kwargs["transpose"] = False
# Load in the datasets
shareseq_rna_adatas = []
for tissuetype in args.shareseq:
shareseq_rna_adatas.append(
adata_utils.load_shareseq_data(
tissuetype,
dirname="/data/wukevin/commonspace_data/GSE140203_SHAREseq",
mode="RNA",
)
)
shareseq_rna_adata = shareseq_rna_adatas[0]
if len(shareseq_rna_adatas) > 1:
shareseq_rna_adata = shareseq_rna_adata.concatenate(
*shareseq_rna_adatas[1:],
join="inner",
batch_key="tissue",
batch_categories=args.shareseq,
)
rna_data_kwargs["raw_adata"] = shareseq_rna_adata
else:
rna_data_kwargs = copy.copy(sc_data_loaders.TENX_PBMC_RNA_DATA_KWARGS)
rna_data_kwargs["fname"] = args.data
if args.nofilter:
rna_data_kwargs = {
k: v for k, v in rna_data_kwargs.items() if not k.startswith("filt_")
}
rna_data_kwargs["data_split_by_cluster_log"] = not args.linear
rna_data_kwargs["data_split_by_cluster"] = args.clustermethod
sc_rna_dataset = sc_data_loaders.SingleCellDataset(
valid_cluster_id=args.validcluster,
test_cluster_id=args.testcluster,
**rna_data_kwargs,
)
sc_rna_train_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_rna_dataset, split="train",
)
sc_rna_valid_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_rna_dataset, split="valid",
)
sc_rna_test_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_rna_dataset, split="test",
)
# ATAC
logging.info("Aggregating ATAC clusters")
if args.snareseq:
atac_data_kwargs = copy.copy(sc_data_loaders.SNARESEQ_ATAC_DATA_KWARGS)
elif args.shareseq:
logging.info(f"Loading in SHAREseq ATAC data for {args.shareseq}")
atac_data_kwargs = copy.copy(sc_data_loaders.SNARESEQ_ATAC_DATA_KWARGS)
atac_data_kwargs["reader"] = None
atac_data_kwargs["fname"] = None
atac_data_kwargs["cell_info"] = None
atac_data_kwargs["gene_info"] = None
atac_data_kwargs["transpose"] = False
atac_adatas = []
for tissuetype in args.shareseq:
atac_adatas.append(
adata_utils.load_shareseq_data(
tissuetype,
dirname="/data/wukevin/commonspace_data/GSE140203_SHAREseq",
mode="ATAC",
)
)
atac_bins = [a.var_names for a in atac_adatas]
if len(atac_adatas) > 1:
atac_bins_harmonized = sc_data_loaders.harmonize_atac_intervals(*atac_bins)
atac_adatas = [
sc_data_loaders.repool_atac_bins(a, atac_bins_harmonized)
for a in atac_adatas
]
shareseq_atac_adata = atac_adatas[0]
if len(atac_adatas) > 1:
shareseq_atac_adata = shareseq_atac_adata.concatenate(
*atac_adatas[1:],
join="inner",
batch_key="tissue",
batch_categories=args.shareseq,
)
atac_data_kwargs["raw_adata"] = shareseq_atac_adata
else:
atac_parsed = [
utils.sc_read_10x_h5_ft_type(fname, "Peaks") for fname in args.data
]
if len(atac_parsed) > 1:
atac_bins = sc_data_loaders.harmonize_atac_intervals(
atac_parsed[0].var_names, atac_parsed[1].var_names
)
for bins in atac_parsed[2:]:
atac_bins = sc_data_loaders.harmonize_atac_intervals(
atac_bins, bins.var_names
)
logging.info(f"Aggregated {len(atac_bins)} bins")
else:
atac_bins = list(atac_parsed[0].var_names)
atac_data_kwargs = copy.copy(sc_data_loaders.TENX_PBMC_ATAC_DATA_KWARGS)
atac_data_kwargs["fname"] = rna_data_kwargs["fname"]
atac_data_kwargs["pool_genomic_interval"] = 0 # Do not pool
atac_data_kwargs["reader"] = functools.partial(
utils.sc_read_multi_files,
reader=lambda x: sc_data_loaders.repool_atac_bins(
utils.sc_read_10x_h5_ft_type(x, "Peaks"), atac_bins,
),
)
atac_data_kwargs["cluster_res"] = 0 # Do not bother clustering ATAC data
sc_atac_dataset = sc_data_loaders.SingleCellDataset(
predefined_split=sc_rna_dataset, **atac_data_kwargs
)
sc_atac_train_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_atac_dataset, split="train",
)
sc_atac_valid_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_atac_dataset, split="valid",
)
sc_atac_test_dataset = sc_data_loaders.SingleCellDatasetSplit(
sc_atac_dataset, split="test",
)
sc_dual_train_dataset = sc_data_loaders.PairedDataset(
sc_rna_train_dataset, sc_atac_train_dataset, flat_mode=True,
)
sc_dual_valid_dataset = sc_data_loaders.PairedDataset(
sc_rna_valid_dataset, sc_atac_valid_dataset, flat_mode=True,
)
sc_dual_test_dataset = sc_data_loaders.PairedDataset(
sc_rna_test_dataset, sc_atac_test_dataset, flat_mode=True,
)
sc_dual_full_dataset = sc_data_loaders.PairedDataset(
sc_rna_dataset, sc_atac_dataset, flat_mode=True,
)
# Model
param_combos = list(
itertools.product(
args.hidden, args.lossweight, args.lr, args.batchsize, args.seed
)
)
for h_dim, lw, lr, bs, rand_seed in param_combos:
outdir_name = (
f"{args.outdir}_hidden_{h_dim}_lossweight_{lw}_lr_{lr}_batchsize_{bs}_seed_{rand_seed}"
if len(param_combos) > 1
else args.outdir
)
if not os.path.isdir(outdir_name):
assert not os.path.exists(outdir_name)
os.makedirs(outdir_name)
assert os.path.isdir(outdir_name)
with open(os.path.join(outdir_name, "rna_genes.txt"), "w") as sink:
for gene in sc_rna_dataset.data_raw.var_names:
sink.write(gene + "\n")
with open(os.path.join(outdir_name, "atac_bins.txt"), "w") as sink:
for atac_bin in sc_atac_dataset.data_raw.var_names:
sink.write(atac_bin + "\n")
# Write dataset
### Full
sc_rna_dataset.size_norm_counts.write_h5ad(
os.path.join(outdir_name, "full_rna.h5ad")
)
sc_rna_dataset.size_norm_log_counts.write_h5ad(
os.path.join(outdir_name, "full_rna_log.h5ad")
)
sc_atac_dataset.data_raw.write_h5ad(os.path.join(outdir_name, "full_atac.h5ad"))
### Train
sc_rna_train_dataset.size_norm_counts.write_h5ad(
os.path.join(outdir_name, "train_rna.h5ad")
)
sc_atac_train_dataset.data_raw.write_h5ad(
os.path.join(outdir_name, "train_atac.h5ad")
)
### Valid
sc_rna_valid_dataset.size_norm_counts.write_h5ad(
os.path.join(outdir_name, "valid_rna.h5ad")
)
sc_atac_valid_dataset.data_raw.write_h5ad(
os.path.join(outdir_name, "valid_atac.h5ad")
)
### Test
sc_rna_test_dataset.size_norm_counts.write_h5ad(
os.path.join(outdir_name, "truth_rna.h5ad")
)
sc_atac_dataset.data_raw.write_h5ad(os.path.join(outdir_name, "full_atac.h5ad"))
sc_atac_test_dataset.data_raw.write_h5ad(
os.path.join(outdir_name, "truth_atac.h5ad")
)
# Instantiate and train model
model_class = (
autoencoders.NaiveSplicedAutoEncoder
if args.naive
else autoencoders.AssymSplicedAutoEncoder
)
spliced_net = autoencoders.SplicedAutoEncoderSkorchNet(
module=model_class,
module__hidden_dim=h_dim, # Based on hyperparam tuning
module__input_dim1=sc_rna_dataset.data_raw.shape[1],
module__input_dim2=sc_atac_dataset.get_per_chrom_feature_count(),
module__final_activations1=[
activations.Exp(),
activations.ClippedSoftplus(),
],
module__final_activations2=nn.Sigmoid(),
module__flat_mode=True,
module__seed=rand_seed,
lr=lr, # Based on hyperparam tuning
criterion=loss_functions.QuadLoss,
criterion__loss2=loss_functions.BCELoss, # handle output of encoded layer
criterion__loss2_weight=lw, # numerically balance the two losses with different magnitudes
criterion__record_history=True,
optimizer=OPTIMIZER_DICT[args.optim],
iterator_train__shuffle=True,
device=utils.get_device(args.device),
batch_size=bs, # Based on hyperparam tuning
max_epochs=500,
callbacks=[
skorch.callbacks.EarlyStopping(patience=args.earlystop),
skorch.callbacks.LRScheduler(
policy=torch.optim.lr_scheduler.ReduceLROnPlateau,
**model_utils.REDUCE_LR_ON_PLATEAU_PARAMS,
),
skorch.callbacks.GradientNormClipping(gradient_clip_value=5),
skorch.callbacks.Checkpoint(
dirname=outdir_name, fn_prefix="net_", monitor="valid_loss_best",
),
],
train_split=skorch.helper.predefined_split(sc_dual_valid_dataset),
iterator_train__num_workers=8,
iterator_valid__num_workers=8,
)
if args.pretrain:
# Load in the warm start parameters
spliced_net.load_params(f_params=args.pretrain)
spliced_net.partial_fit(sc_dual_train_dataset, y=None)
else:
spliced_net.fit(sc_dual_train_dataset, y=None)
fig = plot_loss_history(
spliced_net.history, os.path.join(outdir_name, f"loss.{args.ext}")
)
plt.close(fig)
logging.info("Evaluating on test set")
logging.info("Evaluating RNA > RNA")
sc_rna_test_preds = spliced_net.translate_1_to_1(sc_dual_test_dataset)
sc_rna_test_preds_anndata = sc.AnnData(
sc_rna_test_preds,
var=sc_rna_test_dataset.data_raw.var,
obs=sc_rna_test_dataset.data_raw.obs,
)
sc_rna_test_preds_anndata.write_h5ad(
os.path.join(outdir_name, "rna_rna_test_preds.h5ad")
)
fig = plot_utils.plot_scatter_with_r(
sc_rna_test_dataset.size_norm_counts.X,
sc_rna_test_preds,
one_to_one=True,
logscale=True,
density_heatmap=True,
title="RNA > RNA (test set)",
fname=os.path.join(outdir_name, f"rna_rna_scatter_log.{args.ext}"),
)
plt.close(fig)
logging.info("Evaluating ATAC > ATAC")
sc_atac_test_preds = spliced_net.translate_2_to_2(sc_dual_test_dataset)
sc_atac_test_preds_anndata = sc.AnnData(
sc_atac_test_preds,
var=sc_atac_test_dataset.data_raw.var,
obs=sc_atac_test_dataset.data_raw.obs,
)
sc_atac_test_preds_anndata.write_h5ad(
os.path.join(outdir_name, "atac_atac_test_preds.h5ad")
)
fig = plot_utils.plot_auroc(
sc_atac_test_dataset.data_raw.X,
sc_atac_test_preds,
title_prefix="ATAC > ATAC",
fname=os.path.join(outdir_name, f"atac_atac_auroc.{args.ext}"),
)
plt.close(fig)
logging.info("Evaluating ATAC > RNA")
sc_atac_rna_test_preds = spliced_net.translate_2_to_1(sc_dual_test_dataset)
sc_atac_rna_test_preds_anndata = sc.AnnData(
sc_atac_rna_test_preds,
var=sc_rna_test_dataset.data_raw.var,
obs=sc_rna_test_dataset.data_raw.obs,
)
sc_atac_rna_test_preds_anndata.write_h5ad(
os.path.join(outdir_name, "atac_rna_test_preds.h5ad")
)
fig = plot_utils.plot_scatter_with_r(
sc_rna_test_dataset.size_norm_counts.X,
sc_atac_rna_test_preds,
one_to_one=True,
logscale=True,
density_heatmap=True,
title="ATAC > RNA (test set)",
fname=os.path.join(outdir_name, f"atac_rna_scatter_log.{args.ext}"),
)
plt.close(fig)
logging.info("Evaluating RNA > ATAC")
sc_rna_atac_test_preds = spliced_net.translate_1_to_2(sc_dual_test_dataset)
sc_rna_atac_test_preds_anndata = sc.AnnData(
sc_rna_atac_test_preds,
var=sc_atac_test_dataset.data_raw.var,
obs=sc_atac_test_dataset.data_raw.obs,
)
sc_rna_atac_test_preds_anndata.write_h5ad(
os.path.join(outdir_name, "rna_atac_test_preds.h5ad")
)
fig = plot_utils.plot_auroc(
sc_atac_test_dataset.data_raw.X,
sc_rna_atac_test_preds,
title_prefix="RNA > ATAC",
fname=os.path.join(outdir_name, f"rna_atac_auroc.{args.ext}"),
)
plt.close(fig)
del spliced_net
if __name__ == "__main__":
main()