[d01132]: / bin / predict_protein.py

Download this file

138 lines (120 with data), 4.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Script for predicting protein expression
"""
import os
import sys
import logging
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import skorch
SRC_DIR = os.path.join(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "babel"
)
assert os.path.isdir(SRC_DIR)
sys.path.append(SRC_DIR)
MODELS_DIR = os.path.join(SRC_DIR, "models")
assert os.path.isdir(MODELS_DIR)
sys.path.append(MODELS_DIR)
import sc_data_loaders
import autoencoders
import loss_functions
import model_utils
import protein_utils
import utils
from predict_model import (
load_atac_files_for_eval,
load_rna_files_for_eval,
)
def build_parser():
"""Build commandline parser"""
parser = argparse.ArgumentParser(
usage=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--babel", type=str, required=True, help="Path to babel model")
parser.add_argument(
"--protmodel", type=str, required=True, help="Path to latent-to-protein model"
)
input_group = parser.add_mutually_exclusive_group(required=True)
input_group.add_argument("--atac", type=str, nargs="*", help="Input ATAC")
input_group.add_argument("--rna", type=str, nargs="*", help="Input RNA")
parser.add_argument(
"--liftHg19toHg38",
action="store_true",
help="Liftover input ATAC bins from hg19 to hg38 (only used for ATAC input)",
)
parser.add_argument(
"-o", "--output", required=True, type=str, help="csv file to output"
)
parser.add_argument("--device", default=1, type=int, help="Device for training")
return parser
def main():
parser = build_parser()
args = parser.parse_args()
assert args.output.endswith(".csv")
# Specify output log file
logger = logging.getLogger()
fh = logging.FileHandler(args.output + ".log")
fh.setLevel(logging.INFO)
logger.addHandler(fh)
# Log parameters
for arg in vars(args):
logging.info(f"Parameter {arg}: {getattr(args, arg)}")
# Load the model
babel = model_utils.load_model(args.babel, device=args.device)
# Load in some related files
rna_genes = utils.read_delimited_file(os.path.join(args.babel, "rna_genes.txt"))
atac_bins = utils.read_delimited_file(os.path.join(args.babel, "atac_bins.txt"))
# Load in the protein accesory model
babel_prot_acc_model = protein_utils.load_protein_accessory_model(args.protmodel)
proteins = utils.read_delimited_file(
os.path.join(args.protmodel, "protein_proteins.txt")
)
# Get the encoded layer based on input
if args.rna:
(
sc_rna_dset,
_rna_genes,
_marker_genes,
_housekeeper_genes,
) = load_rna_files_for_eval(args.rna, checkpoint=args.babel, no_filter=True)
sc_atac_dummy_dset = sc_data_loaders.DummyDataset(
shape=len(atac_bins), length=len(sc_rna_dset)
)
sc_dual_dataset = sc_data_loaders.PairedDataset(
sc_rna_dset,
sc_atac_dummy_dset,
flat_mode=True,
)
sc_dual_encoded_dataset = sc_data_loaders.EncodedDataset(
sc_dual_dataset, model=babel, input_mode="RNA"
)
cell_barcodes = list(sc_rna_dset.data_raw.obs_names)
encoded = sc_dual_encoded_dataset.encoded
else:
sc_atac_dset, _loaded_atac_bins = load_atac_files_for_eval(
args.atac, checkpoint=args.babel, lift_hg19_to_hg39=args.liftHg19toHg38
)
sc_rna_dummy_dset = sc_data_loaders.DummyDataset(
shape=len(rna_genes), length=len(sc_atac_dset)
)
sc_dual_dataset = sc_data_loaders.PairedDataset(
sc_rna_dummy_dset, sc_atac_dset, flat_mode=True
)
sc_dual_encoded_dataset = sc_data_loaders.EncodedDataset(
sc_dual_dataset, model=babel, input_mode="ATAC"
)
cell_barcodes = list(sc_atac_dset.data_raw.obs_names)
encoded = sc_dual_encoded_dataset.encoded
# Array of preds
prot_preds = babel_prot_acc_model.predict(encoded.X)
prot_preds_df = pd.DataFrame(
prot_preds,
index=cell_barcodes,
columns=proteins,
)
prot_preds_df.to_csv(args.output)
if __name__ == "__main__":
main()