[413088]: / docs / roianalysis.html

Download this file

1064 lines (968 with data), 43.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>ROI Analysis</title>
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-6.5.2/css/all.min.css" rel="stylesheet" />
<link href="site_libs/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet" />
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "\e259";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "\e258";
font-family: 'Glyphicons Halflings';
border: none;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
.tocify-subheader {
display: inline;
}
.tocify-subheader .tocify-item {
font-size: 0.95em;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">VoltRon</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="tutorials.html">Explore</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Vignette
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Spatial Data Integration</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="registration.html">Spatial Data Alignment</a>
</li>
<li>
<a href="multiomic.html">Multi-omic Integration</a>
</li>
<li>
<a href="nicheclustering.html">Niche Clustering</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Downstream Analysis</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="roianalysis.html">ROI Analysis</a>
</li>
<li>
<a href="spotanalysis.html">Cell/Spot Analysis</a>
</li>
<li>
<a href="moleculeanalysis.html">Molecule Analysis</a>
</li>
<li>
<a href="pixelanalysis.html">Pixels (Image Only) Analysis</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Utilities</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="interactive.html">Interactive Utilities</a>
</li>
<li>
<a href="importingdata.html">Importing Spatial Data</a>
</li>
<li>
<a href="voltronobjects.html">Working with VoltRon Objects</a>
</li>
<li>
<a href="conversion.html">Converting VoltRon Objects</a>
</li>
<li>
<a href="ondisk.html">OnDisk-based Analysis Utilities</a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-envelope-o"></span>
Contact
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://bioinformatics.mdc-berlin.de">Altuna Lab/BIMSB Bioinfo</a>
</li>
<li>
<a href="https://www.mdc-berlin.de/landthaler">Landthaler Lab/BIMSB</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-github"></span>
GitHub
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://github.com/BIMSBbioinfo/VoltRon">VoltRon</a>
</li>
<li>
<a href="https://github.com/BIMSBbioinfo">BIMSB Bioinfo</a>
</li>
</ul>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<h1 class="title toc-ignore">ROI Analysis</h1>
</div>
<style>
.title{
display: none;
}
body {
text-align: justify
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
}
table, th, td {
border-collapse: collapse;
align-self: center;
padding-right: 10px;
padding-left: 10px;
}
</style>
<style type="text/css">
.watch-out {
color: black;
}
</style>
<p><br></p>
<div id="roi-analysis" class="section level1">
<h1>ROI Analysis</h1>
<p>VoltRon is capable of analyzing readouts from distinct spatial
technologies including <strong>segmentation (ROI)-based transciptomics
assays</strong> that capture large polygonic regions on tissue sections.
VoltRon recognizes such readouts including ones from commercially
available tools and allows users to implement a workflow similar to ones
conducted on bulk RNA-Seq datasets. In this tutorial, we will analyze
morphological images and gene expression profiles provided by the
readouts of the <a
href="https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/">Nanostring’s
GeoMx Digital Spatial Profiler</a> platform, a high-plex spatial
profiling technology which produces segmentation-based protein and RNA
assays.</p>
<p>In this use case, <strong>eight tissue micro array (TMA) tissue
sections</strong> were fitted into the scan area of the slide loaded on
the GeoMx DSP instrument. These sections were cut from <strong>control
and COVID-19 lung tissues</strong> of donors categorized based on
disease durations (acute and prolonged). See <a
href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190732">GSE190732</a>
for more information.</p>
<p>You can download these tutorial files from here:</p>
<table>
<tr>
<th>
File
</th>
<th>
Link
</th>
</tr>
<tr>
<td>
Counts
</td>
<td>
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/DCC-20230427.zip">DDC
files</a>
</td>
</tr>
<tr>
<td>
GeoMx Human Whole Transcriptome Atlas
</td>
<td>
<a href="https://nanostring.com/wp-content/uploads/Hs_R_NGS_WTA_v1.0.pkc_.zip">Human
RNA WTA for NGS</a>
</td>
</tr>
<tr>
<td>
Segment Summary
</td>
<td>
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/segmentSummary.csv">
ROI Metadata file </a>
</td>
</tr>
<tr>
<td>
Morphology Image
</td>
<td>
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.tif">
Image file </a>
</td>
</tr>
<tr>
<td>
OME.TIFF Image
</td>
<td>
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.ome.tiff">
OME.TIFF file </a>
</td>
</tr>
<tr>
<td>
OME.TIFF Image (XML)
</td>
<td>
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.ome.tiff.xml" download target="_blank">
OME.TIFF (XML) file </a>
</td>
</tr>
</table>
<p>
</p>
<p>We now import the GeoMx data, and start analyzing 87 user selected
segments (i.e. region of interests, <strong>ROI</strong>) to check
spatial localization of signals. The <strong>importGeoMx</strong>
function requires:</p>
<ul>
<li>The path to the Digital Count Conversion file,
<strong>dcc.path</strong>, and Probe Kit Configuration file,
<strong>pkc.file</strong>, which are both provided as the output of the
<a
href="https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/nanostring-geomxr-ngs-pipeline.html">GeoMx
NGS Pipeline</a>.</li>
<li>The path the to the metadata file, <strong>summarySegment</strong>,
and the specific excel sheet that the metadata is found,
<strong>summarySegmentSheetName</strong>, the path to the main
morphology <strong>image</strong> and the original <strong>ome.tiff
(xml)</strong> file, all of which are provided and imported from the DSP
Control Center. Please see <a
href="https://nanostring.com/support-documents/geomx-dsp-data-analysis-user-manual/">GeoMx
DSP Data Analysis User Manual</a> for more information.</li>
</ul>
<pre class="r watch-out"><code>library(VoltRon)
library(xlsx)
GeoMxR1 &lt;- importGeoMx(dcc.path = &quot;DCC-20230427/&quot;,
pkc.file = &quot;Hs_R_NGS_WTA_v1.0.pkc&quot;,
summarySegment = &quot;segmentSummary.csv&quot;,
image = &quot;Lu1A1B5umtrueexp.tif&quot;,
ome.tiff = &quot;Lu1A1B5umtrueexp.ome.tiff.xml&quot;,
sample_name = &quot;GeoMxR1&quot;)</code></pre>
<p>We can import the GeoMx ROI segments from the
<strong>Lu1A1B5umtrueexp.ome.tiff</strong> image file directly by
replacing the .xml file with the .ome.tiff file in the
<strong>ome.tiff</strong> argument. Note that you need to call the
<strong>RBioFormats</strong> library. If you are getting a <strong>java
error</strong> when running importGeoMx, try increasing the maximum heap
size by supplying the <strong>-Xmx</strong> parameter. Run the code
below before rerunning <strong>importGeoMx</strong> again.</p>
<pre class="r watch-out"><code>options(java.parameters = &quot;-Xmx4g&quot;)
library(RBioFormats)</code></pre>
<p><br></p>
<div id="quality-control" class="section level2">
<h2>Quality Control</h2>
<p>Once the GeoMx data is imported, we can start off with examining key
quality control measures and statistics on each segment to investigate
each individual ROI such as sequencing saturation and the number of
cells (nuclei) within each segment. VoltRon also provides the total
number of unique transcripts per ROI and stores in the metadata.</p>
<pre class="r watch-out"><code>library(ggplot2)
vrBarPlot(GeoMxR1,
features = c(&quot;Count&quot;, &quot;Nuclei.count&quot;, &quot;Sequencing.saturation&quot;),
x.label = &quot;ROI.name&quot;, group.by = &quot;ROI.type&quot;) +
theme(axis.text.x = element_text(size = 3))</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot.png" class="center"></p>
<p>For measuring the quality of individual ROIs, we can add a new
metadata column, called <strong>CountPerNuclei</strong>, to check the
average quality of cells per ROI. It seems some number of ROIs with low
counts per nuclei also have low sequencing saturation.</p>
<pre class="r watch-out"><code>GeoMxR1$CountPerNuclei &lt;- GeoMxR1$Count/GeoMxR1$Nuclei.count
vrBarPlot(GeoMxR1,
features = c(&quot;Count&quot;, &quot;Nuclei.count&quot;,
&quot;Sequencing.saturation&quot;, &quot;CountPerNuclei&quot;),
x.label = &quot;ROI.name&quot;, group.by = &quot;ROI.type&quot;, ncol = 2) +
theme(axis.text.x = element_text(size = 5))</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot2.png" class="center"></p>
<p><br></p>
</div>
<div id="processing" class="section level2">
<h2>Processing</h2>
<p>We can now filter ROIs based on our earlier observation of them
having low count per nuclei where some also have low sequencing
saturation.</p>
<pre class="r watch-out"><code># Filter for count per nuclei
GeoMxR1 &lt;- subset(GeoMxR1, subset = CountPerNuclei &gt; 500)</code></pre>
<p>We then filter genes with low counts by extracting the count matrix
and putting aside all genes whose maximum count across all 87 ROIs are
less than 10.</p>
<pre class="r watch-out"><code>GeoMxR1_data &lt;- vrData(GeoMxR1, norm = FALSE)
feature_ind &lt;- apply(GeoMxR1_data, 1, function(x) max(x) &gt; 10)
selected_features &lt;- vrFeatures(GeoMxR1)[feature_ind]
GeoMxR1_lessfeatures &lt;- subset(GeoMxR1, features = selected_features)</code></pre>
<p>VoltRon is capable of normalizing data provided by a diverse set of
spatial technologies, including the quantile normalization method
suggested by the <a
href="https://nanostring.com/support-documents/geomx-dsp-data-analysis-user-manual/">GeoMx
DSP Data Analysis User Manual</a> which scales the ROI profiles to the
third quartile followed by the geometric mean of all third quartiles
multipled to the scaled profile.</p>
<pre class="r watch-out"><code>GeoMxR1 &lt;- normalizeData(GeoMxR1, method = &quot;Q3Norm&quot;)</code></pre>
<p><br></p>
</div>
<div id="interactive-subsetting" class="section level2">
<h2>Interactive Subsetting</h2>
<p>Spatially informed genomic technologies heavily depend on image
manipulation as images provide an additional set of information. Hence,
VoltRon incorporates several interactive built-in utilities. One such
functionality allows manipulating images of VoltRon assays where users
can interactively choose subsets of images. However, we first resize the
morphology image by providing the width of the new image (thus height
will be reduced to preserve the aspect ratio).</p>
<pre class="r watch-out"><code># resizing the image
# GeoMxR1 &lt;- resizeImage(GeoMxR1, size = 4000)</code></pre>
<p>VoltRon provides <strong>a mini Shiny app</strong> for subsetting
spatial points of a VoltRon object by using the image as a reference.
This app is particularly useful when multiple tissue sections were
fitted to a scan area of a slide, such as the one from GeoMx DSP
instrument. We use <strong>interactive = TRUE</strong> option in the
subset function to call the mini Shiny app, and select bounding boxes of
each newly created subset. <strong>Please continue until all eight
sections are selected and subsetted</strong>.</p>
<pre class="r watch-out"><code>GeoMxR1_subset &lt;- subset(GeoMxR1, interactive = TRUE)</code></pre>
<p><img width="85%" height="85%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/interactivesubset.gif" class="center"></p>
<p>We can now merge the list of subsets, or samples, each associated
with one of eight sections. You can provide a list of names for the
newly subsetted samples.</p>
<pre class="r watch-out"><code>GeoMxR1_subset_list &lt;- GeoMxR1_subset$subsets
GeoMxR1 &lt;- merge(GeoMxR1_subset_list[[1]], GeoMxR1_subset_list[-1])
GeoMxR1</code></pre>
<pre><code>VoltRon Object
prolonged case 4:
Layers: Section1
acute case 3:
Layers: Section1
control case 2:
Layers: Section1
acute case 1:
Layers: Section1
acute case 2:
Layers: Section1
...
There are 8 samples in total
Assays: GeoMx(Main) </code></pre>
<p><br></p>
<p>You may also save the selected image subsets and reproduce the
interactive subsetting operation for later use.</p>
<pre class="r watch-out"><code>samples &lt;- c(&quot;prolonged case 4&quot;, &quot;acute case 3&quot;, &quot;control case 2&quot;,
&quot;acute case 1&quot;, &quot;acute case 2&quot;, &quot;prolonged case 5&quot;,
&quot;prolonged case 3&quot;, &quot;control case 1&quot;)
subset_info_list &lt;- GeoMxR1_subset$subset_info_list[[1]]
GeoMxR1_subset_list &lt;- list()
for(i in 1:length(subset_info_list)){
GeoMxR1_subset_list[[i]] &lt;- subset(GeoMxR1, image = subset_info_list[i])
GeoMxR1_subset_list[[i]] &lt;- samples[i]
}
GeoMxR1 &lt;- merge(GeoMxR1_subset_list[[1]], GeoMxR1_subset_list[-1])</code></pre>
<p><br></p>
</div>
<div id="visualization" class="section level2">
<h2>Visualization</h2>
<p>We will now select sections of interests from the VoltRon object, and
visualize ROIs and features for each of these sections.</p>
<p>The function <strong>vrSpatialPlot</strong> plots categorical
attributes associated with ROIs. In this case, we will visualize types
of ROIs that were labelled and annotated during ROI selection.</p>
<pre class="r watch-out"><code>GeoMxR1_subset &lt;- subset(GeoMxR1, sample = c(&quot;prolonged case 4&quot;,&quot;acute case 3&quot;))
vrSpatialPlot(GeoMxR1_subset, group.by = &quot;ROI.type&quot;, ncol = 3, alpha = 0.6)</code></pre>
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot.png" class="center"></p>
<p>The function <strong>vrSpatialFeaturePlot</strong> detects the number
of assays within each VoltRon object and visualizes each feature per
each spatial image. A grid of images are visualized either the number of
assays or the number of features are larger than 1. Here, we visualize
the normalized expression of COL1A1 and C1S, two fibrotic markers,
across ROIs of two prolonged covid cases. One may observe that the
fibrotic regions of prolonged case 5 have considerably more COL1A1 and
C1S compared to prolonged case 4.</p>
<pre class="r watch-out"><code>GeoMxR1_subset &lt;- subset(GeoMxR1, sample = c(&quot;prolonged case 4&quot;,&quot;prolonged case 5&quot;))
vrSpatialFeaturePlot(GeoMxR1_subset, features = c(&quot;COL1A1&quot;, &quot;C1S&quot;), group.by = &quot;ROI.name&quot;,
log = TRUE, label = TRUE, keep.scale = &quot;feature&quot;, title.size = 15)</code></pre>
<p><img width="85%" height="85%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_featureplot.png" class="center"></p>
<p><br></p>
</div>
<div id="dimensionality-reduction" class="section level2">
<h2>Dimensionality Reduction</h2>
<p>We can now process the normalized and demultiplexed samples to map
ROIs across all sections onto lower dimensional spaces. The functions
<strong>getFeatures</strong> and <strong>getPCA</strong> select features
(i.e. genes) of interest from the data matrix across all samples and
reduce it to a selected number of principal components.</p>
<pre class="r watch-out"><code>GeoMxR1 &lt;- getFeatures(GeoMxR1)
GeoMxR1 &lt;- getPCA(GeoMxR1, dims = 30)</code></pre>
<p>The function <strong>vrEmbeddingPlot</strong> can be used to
visualize embedding spaces (pca, umap, etc.) for any spatial point
supported by VoltRon, hence cells, spots and ROI are all visualized
using the same set of functions. Here we generate a new metadata column
that represents the <strong>disease durations (control, acute and
prolonged case)</strong>, then map gene profiles to the first two
principal components.</p>
<pre class="r watch-out"><code>GeoMxR1$Condition &lt;- gsub(&quot; [0-9]+$&quot;, &quot;&quot;, GeoMxR1$Sample)
vrEmbeddingPlot(GeoMxR1, group.by = c(&quot;Condition&quot;), embedding = &quot;pca&quot;, pt.size = 3)</code></pre>
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_embeddingplotsingle.png" class="center"></p>
<p>VoltRon provides additional dimensionality reduction techniques such
as <strong>UMAP</strong>.</p>
<pre class="r watch-out"><code>GeoMxR1 &lt;- getUMAP(GeoMxR1)</code></pre>
<p>Gene expression profiles of ROIs associated with prolonged case
sections seem to show some heterogeneity. We now color segments by
section (or replicate, <strong>Sample</strong>) to observe the sources
of variability. Three replicates of prolonged cases exhibit three
different clusters of ROIs.</p>
<pre class="r watch-out"><code>vrEmbeddingPlot(GeoMxR1, group.by = c(&quot;Condition&quot;), embedding = &quot;pca&quot;, pt.size = 3)
vrEmbeddingPlot(GeoMxR1, group.by = c(&quot;ROI.type&quot;), embedding = &quot;pca&quot;, pt.size = 3)
vrEmbeddingPlot(GeoMxR1, group.by = c(&quot;ROI.type&quot;), embedding = &quot;umap&quot;, pt.size = 3)</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_embeddingplot.png" class="center"></p>
</div>
<div id="differential-expression-analysis" class="section level2">
<h2>Differential Expression Analysis</h2>
<p>VoltRon provides wrapping functions for calling tools and methods
from popular differential expression analysis package such as <a
href="https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8">DESeq2</a>.
We utilize <strong>DESeq2</strong> to find differentially expressed
genes across each pair of ROI types conditions.</p>
<pre class="r watch-out"><code># get DE for all conditions
library(DESeq2)
library(dplyr)
DEresults &lt;- getDiffExp(GeoMxR1, group.by = &quot;ROI.type&quot;,
group.base = &quot;vessel&quot;, method = &quot;DESeq2&quot;)
DEresults_sig &lt;- DEresults %&gt;% filter(!is.na(padj)) %&gt;%
filter(padj &lt; 0.05, abs(log2FoldChange) &gt; 1)
head(DEresults_sig)</code></pre>
<div>
<pre><code style="font-size: 11.7px;"> baseMean log2FoldChange lfcSE stat pvalue padj gene comparison
ACTA2 33.48395 1.508701 0.3458464 4.362343 1.286768e-05 4.902586e-03 ACTA2 ROI.type_vessel_epithelium
ADAMTS1 22.29160 1.152556 0.2272085 5.072680 3.922515e-07 4.109815e-04 ADAMTS1 ROI.type_vessel_epithelium
C11orf96 27.48924 1.142085 0.3041057 3.755554 1.729585e-04 2.588819e-02 C11orf96 ROI.type_vessel_epithelium
CNN1 16.87670 1.112662 0.2680222 4.151381 3.304757e-05 9.766004e-03 CNN1 ROI.type_vessel_epithelium
CRYAB 21.85960 1.264747 0.2173272 5.819552 5.900570e-09 2.472929e-05 CRYAB ROI.type_vessel_epithelium
FLNA 44.50957 1.270025 0.3243115 3.916066 9.000548e-05 1.985331e-02 FLNA ROI.type_vessel_epithelium</code></pre>
</div>
<p><br></p>
<p>The <strong>vrHeatmapPlot</strong> takes a set of features for any
type of spatial point (cells, spots and ROIs) and visualizes scaled data
per each feature. We select <strong>highlight.some = TRUE</strong> to
annotate features which could be large in size where you can also select
the number of such highlighted genes with <strong>n_highlight</strong>.
There seems to be two groups of fibrotic regions that most likely
associated with two prolonged case samples.</p>
<pre class="r watch-out"><code># get DE for all conditions
library(ComplexHeatmap)
vrHeatmapPlot(GeoMxR1, features = unique(DEresults_sig$gene), group.by = &quot;ROI.type&quot;,
highlight.some = TRUE, n_highlight = 40)</code></pre>
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap.png" class="center"></p>
<p><br></p>
<p>In order to get a deeper understanding of differences between
fibrotic regions across two prolonged case replicates. We first subset
the GeoMx data to only sections with fibrotic ROIs.</p>
<pre class="r watch-out"><code>fibrotic_ROI &lt;- vrSpatialPoints(GeoMxR1)[GeoMxR1$ROI.type == &quot;fibrotic&quot;]
GeoMxR1_subset &lt;- subset(GeoMxR1, spatialpoints = fibrotic_ROI)
vrSpatialPlot(GeoMxR1_subset, group.by = &quot;ROI.type&quot;, ncol = 3, alpha = 0.4)</code></pre>
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_fibrotic.png" class="center"></p>
<p>The <strong>getDiffExp</strong> function is capable of testing
differential expression across all metadata columns, including the
<strong>Samples</strong> column that captures labels of different tissue
sections. Macrophage markers such as CD68 and CD163 are differentially
expressed in fibrotic regions of case 5 compared to case 4, including
FN1, a profibrotic gene whose expression can be found on
macrophages.</p>
<pre class="r watch-out"><code>DEresults &lt;- getDiffExp(GeoMxR1_subset, group.by = &quot;Sample&quot;,
group.base = &quot;prolonged case 5&quot;, method = &quot;DESeq2&quot;)
DEresults_sig &lt;- DEresults %&gt;% filter(!is.na(padj)) %&gt;%
filter(padj &lt; 0.05, abs(log2FoldChange) &gt; 1)
DEresults_sig &lt;- DEresults_sig[order(DEresults_sig$log2FoldChange, decreasing = TRUE),]
head(DEresults_sig)</code></pre>
<div>
<pre><code style="font-size: 10.7px;"> baseMean log2FoldChange lfcSE stat pvalue padj gene comparison
COL3A1 708.5599 6.635411 0.5198805 12.763338 2.626978e-37 1.596809e-33 COL3A1 Sample_prolonged case 5_prolonged case 4
COL1A2 836.0790 5.237228 0.4407380 11.882861 1.453071e-32 4.416246e-29 COL1A2 Sample_prolonged case 5_prolonged case 4
COL1A1 460.2184 5.175153 0.5237868 9.880267 5.069785e-23 3.081669e-20 COL1A1 Sample_prolonged case 5_prolonged case 4
FN1 278.6594 5.083687 0.3717299 13.675754 1.417301e-42 1.723013e-38 FN1 Sample_prolonged case 5_prolonged case 4
HBB 202.7693 4.944228 0.4884175 10.122955 4.370193e-24 3.794888e-21 HBB Sample_prolonged case 5_prolonged case 4
A2M 466.4328 4.925236 0.4542682 10.842133 2.173435e-27 3.774636e-24 A2M Sample_prolonged case 5_prolonged case 4</code></pre>
</div>
<p><br></p>
<!-- Markers of each individual tissue section for each disease duration is shown on the Heatmap. -->
<!-- ```{r eval = FALSE, class.source="watch-out"} -->
<!-- # get DE for all conditions -->
<!-- vrHeatmapPlot(GeoMxR1, features = unique(DEresults_sig$gene), -->
<!-- group.by = "Sample", highlight.some = TRUE) -->
<!-- ``` -->
<!-- <img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap2.png" class="center"> -->
<!-- <br> -->
</div>
<div id="roi-deconvolution" class="section level2">
<h2>ROI Deconvolution</h2>
<p>VoltRon supports multiple bulk RNA deconvolution algorithms to
analyze the cellular composition of both ROIs and spots. In order to
integrate the scRNA data and the GeoMx data sets within the VoltRon
objects, we will use the <a
href="https://xuranw.github.io/MuSiC/articles/MuSiC.html">MuSiC</a>
package. We will use a human lung scRNA dataset (GSE198864) as
reference, which is found <a
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GSE198864_lung.rds">here</a>.</p>
<pre class="r watch-out"><code>set.seed(1)
library(Seurat)
library(SingleCellExperiment)
seu &lt;- readRDS(&quot;GSE198864_lung.rds&quot;)
scRNAlung &lt;- seu[,sample(1:ncol(seu), 10000, replace = FALSE)]
# Visualize clusters
DimPlot(scRNAlung, reduction = &quot;umap&quot;, label = T, group.by = &quot;Clusters&quot;) + NoLegend()</code></pre>
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_deconvolution_singlecell.png" class="center"></p>
<p>We utilize the <strong>getDeconvolution</strong> function to call
wrapper functions for deconvolution algorithms (see ). For all layers
with GoeMx assays, an additional assay within the same layer with
<strong>_decon</strong> postfix will be created. The
<strong>sc.object</strong> argument can either be a
<strong>Seurat</strong> or <strong>SingleCellExperiment</strong>
object.</p>
<pre class="r watch-out"><code>library(MuSiC)
GeoMxR1 &lt;- getDeconvolution(GeoMxR1,
sc.object = scRNAlung, sc.assay = &quot;RNA&quot;,
sc.cluster = &quot;Clusters&quot;, sc.samples = &quot;orig.ident&quot;)</code></pre>
<pre><code>VoltRon Object
prolonged case 4:
Layers: Section1
acute case 3:
Layers: Section1
control case 2:
Layers: Section1
acute case 1:
Layers: Section1
acute case 2:
Layers: Section1
...
There are 8 samples in total
Assays: GeoMx(Main)
Features: RNA(Main) NegProbe Decon </code></pre>
<p>We can now visualize cell type compositions of each ROI. Before
running <strong>vrProportionPlot</strong> function, we need to set the
main feature type as <strong>Decon</strong>. One may see the increased
proportion of cells NK cells and T cells in immune ROIs.</p>
<pre class="r watch-out"><code>vrMainFeatureType(GeoMxR1) &lt;- &quot;Decon&quot;
vrProportionPlot(GeoMxR1, x.label = &quot;ROI.name&quot;)</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_deconvolution.png" class="center"></p>
<p>Here, we can subset the GeoMx object further to dive deep into the
cellular proportions of each fibrotic region of prolonged cases.
Comparing prolonged case 5 against case 4, we see an increase in the
cellular population of the stromal cluster defined in <a
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922044/">Mothes et.
al 2023</a> (that are both vascular and airway smooth muscle cells), and
an increase abundance of macrophages which may indicate that these
macrophages are profibrotic being within and close to fibrotic regions
with increased gene expression of FN1.</p>
<pre class="r watch-out"><code># subsetting fibrotic regions
spatialpoints &lt;- vrSpatialPoints(GeoMxR1)[GeoMxR1$ROI.type == &quot;fibrotic&quot;]
GeoMxR1_subset &lt;- subset(GeoMxR1, spatialpoints = spatialpoints)
# Proportion plot
vrProportionPlot(GeoMxR1_subset, x.label = &quot;ROI.name&quot;, split.method = &quot;facet_grid&quot;,
split.by = &quot;Sample&quot;)
# barplot
vrBarPlot(GeoMxR1_subset, features = c(&quot;stromal&quot;, &quot;macrophages&quot;), group.by = &quot;Sample&quot;,
x.label = &quot;ROI.name&quot;, split.by = &quot;Sample&quot;)</code></pre>
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap_fibrotic.png" class="center"></p>
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot_prop_fibrotic.png" class="center"></p>
</div>
<div id="he-image-integration" class="section level2">
<h2>H&amp;E Image Integration</h2>
<p>Questions may arise if in fact these ROIs are fibrotic even though
they were initially annotated as fibrotic regions. VoltRon provides
advanced image registration workflows which we can use to H&amp;E images
of from the same TMA blocks where GeoMx slides were established.</p>
<p>We first import the H&amp;E image of the prolonged case 4 TMA section
using the <strong>importImageData</strong> function. This will import
the H&amp;E image as a standalone VoltRon object. For more information
on image-based VoltRon objects, see the <a
href="pixelanalysis.html">Downstream analysis of Pixels</a> section.</p>
<p>We will use the H&amp;E image of TMA section taken from the same
block as the Prolonged case 4. You can download the image from <a
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/prolonged_case4_HE.tif">here</a>.</p>
<pre class="r watch-out"><code>vrHEimage &lt;- importImageData(&quot;prolonged_case4_HE.tif&quot;, channel_names = &quot;H&amp;E&quot;)
vrImages(vrHEimage, scale.perc = 40)</code></pre>
<p><img width="50%" height="50%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/prolonged_case4_HE.png" class="center"></p>
<p><br></p>
<p>We can now register the GeoMx slide with the newly imported H&amp;E
based VoltRon object. Since two images are associated with TMA sections
that are not adjacent, we have to rely on the localization of vessels
visible in both images for alignment. VoltRon allows manipulating
multiple channels of an image object two choose the best background
image for manual landmark selection. For more information on both manual
and automated registration of VoltRon objects, see <a
href="registration.html">here</a>.</p>
<p>VoltRon provides multiple registration methods to align images. Here,
after running the <strong>registerSpatialData</strong> function, we
choose the <strong>Homography + Non-rigid (TPS)</strong> method which
utilizes a perspective transformation on the H&amp;E image followed by a
thin plate spline (TPS) alignment. The perspective transformation
performs a global alignment between the H&amp;E image and the main GeoMx
image (here the scan image with combined antibody channels), and the TPS
method allows correct local deformations between the perspective
transformed H&amp;E image and the GeoMx image for a more accurate</p>
<pre class="r watch-out"><code>GeoMxR1_subset &lt;- subset(GeoMxR1, sample = c(&quot;prolonged case 4&quot;))
GeoMxReg &lt;- registerSpatialData(reference_spatdata = GeoMxR1_subset,
query_spatdata = vrHEimage)</code></pre>
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_manualregistration.png" class="center"></p>
<p>The result of the registration is a list of registered VoltRon
objects which we can use for parsing the registered image as well. In
this case, the second element of the resulting list would be the
registered H&amp;E based VoltRon object.</p>
<pre class="r watch-out"><code>vrHEimage_reg &lt;- GeoMxReg$registered_spat[[2]]</code></pre>
<p>We can check the additional coordinate system now available for the
registered H&amp;E image. One is the coordinate system with the original
image, and the other with the one that is registered.</p>
<pre class="r watch-out"><code>vrSpatialNames(vrHEimage_reg)</code></pre>
<pre><code>[1] &quot;main&quot; &quot;main_reg&quot;</code></pre>
<p>We can also exchange images where the H&amp;E image now is registered
to the perspective of the GeoMx channels, and can be defined as a new
channel in the original GeoMx object.</p>
<pre class="r watch-out"><code>vrImages(GeoMxR1_subset[[&quot;Assay1&quot;]], name = &quot;main&quot;, channel = &quot;H&amp;E&quot;) &lt;- vrImages(vrHEimage_reg, name = &quot;main_reg&quot;, channel = &quot;H&amp;E&quot;)</code></pre>
<p>We can now observe the new channels (H&amp;E) available for the GeoMx
assay using <strong>vrImageChannelNames</strong>. H&amp;E is saved as a
separate channel along with the originally available antibody channels
of the original GeoMx experiment.</p>
<pre class="r watch-out"><code>vrImageChannelNames(GeoMxR1_subset)</code></pre>
<div>
<pre><code style="font-size: 12px;"> Assay Layer Sample Spatial Channels
Assay1 GeoMx Section1 prolonged case 4 main scanimage,DNA,PanCK,CD45,Alpha Smooth Muscle Actin,H&E</code></pre>
</div>
<p>We can now visualize the ROIs and their annotations where the
registered H&amp;E visible in the background. We define the spatial key
<strong>main</strong> and the channel name <strong>H&amp;E</strong>.</p>
<pre class="r watch-out"><code>vrSpatialPlot(GeoMxR1_subset, group.by = &quot;ROI.type&quot;, alpha = 0.7,
spatial = &quot;main&quot;, channel = &quot;H&amp;E&quot;)</code></pre>
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_withHE.png" class="center"></p>
<p>Interactive Visualization can also be used to zoom in to ROIs and
investigate the pathology associated with GeoMx ROIs labeled as
fibrotic.</p>
<pre class="r watch-out"><code>vrSpatialPlot(GeoMxR1_subset, group.by = &quot;ROI.type&quot;, alpha = 0.7,
spatial = &quot;main&quot;, channel = &quot;H&amp;E&quot;,
interactive = TRUE)</code></pre>
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_withHE_interactive.png" class="center"></p>
</div>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// temporarily add toc-ignore selector to headers for the consistency with Pandoc
$('.unlisted.unnumbered').addClass('toc-ignore')
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_');
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = false;
options.smoothScroll = false;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>