--- title: "ondisk" output: html_document: toc: true toc_float: collapsed: false smooth_scroll: false --- ```{css, echo=FALSE} .watch-out { color: black; } ``` ```{r setup, include=FALSE} # use rmarkdown::render_site(envir = knitr::knit_global()) knitr::opts_chunk$set(highlight = TRUE, echo = TRUE) ```
## Import VisiumHD Data We first have to download some packages that are necessary to import datasets from `.parquet` and `.h5` files provided by the VisiumHD readouts. ```{r class.source="watch-out", eval = FALSE} install.packages("arrow") BiocManager::install("rhdf5") library(arrow) library(rhdf5) ``` We use the **importVisiumHD** function to start analyzing the data. The data has 393401 spots which we will use OnDisk-backed methods to efficiently manipulate, analyze and visualize these spots. The VisiumHD readouts provide multiple bin sizes which are aggregated versions of the original 2$\mu$m $x$ 2$\mu$m capture spots. The default bin sizes are **(i)** 2$\mu$m $x$ 2$\mu$m, **(ii)** 8$\mu$m $x$ 8$\mu$m and **(iii)** 16$\mu$m $x$ 16$\mu$m. ```{r class.source="watch-out", eval = FALSE} hddata <- importVisiumHD(dir.path = "VisiumHD/outs/", bin.size = "8", resolution_level = "hires") ```
## Saving/Loading VoltRon Objects We use **BPCells** and **ImageArray** packages to accelerate operations of feature matrices and images. Here **BPCells** allows users access and operate on large feature matrices or clustering/spatial analysis, while **ImageArray** provides [pyramids images](https://en.wikipedia.org/wiki/Pyramid_(image_processing)) to allow fast access to large microscopy images. You can download these package from GitHub using **devtools**. ```{r class.source="watch-out", eval = FALSE} devtools::install_github("bnprks/BPCells/r") devtools::install_github("BIMSBbioinfo/ImageArray") library(BPCells) library(ImageArray) ``` We can now save the VoltRon object to disk, large matrices and images will be written to either **hdf5** or **zarr** files depending on the **format** arguement, and the rest of the R object would be written to an `.rds` file, both under the designated **output**. ```{r class.source="watch-out", eval = FALSE} hddata <- saveVoltRon(hddata, format = "HDF5VoltRon", output = "data/VisiumHD") ``` If you want you can load the VoltRon object from the same path as you have saved. ```{r class.source="watch-out", eval = FALSE} hddata <- loadVoltRon("data/VisiumHD/") ```
## Cell/Spot Analysis The **BPCells** package provides fast methods to achieve operations common to single cell analysis such as filtering, normalization and dimensionality reduction. Here we have an example of single-cell like clustering of VisiumHD bins which is efficiently clustered. ```{r class.source="watch-out", eval = FALSE} spatialpoints <- vrSpatialPoints(hddata)[as.vector(Metadata(hddata)$Count > 10)] hddata <- subset(hddata, spatialpoints = spatialpoints) hddata <- normalizeData(hddata, sizefactor = 10000) hddata <- getFeatures(hddata, n = 3000) selected_features <- getVariableFeatures(hddata) hddata <- getPCA(hddata, features = selected_features, dims = 30) hddata <- getUMAP(hddata, dims = 1:30) ``` We can now visualized genes over embedding or spatial plots. ```{r class.source="watch-out", eval = FALSE} vrEmbeddingFeaturePlot(hddata, features = "Nrgn", embedding = "umap") vrSpatialFeaturePlot(hddata, features = "Nrgn") ```

## Spatial Data Alignment The image registration workflow in the [Spatial Data Alignment](registration.html) tutorial can also be conducted using disk-backed methods of the VoltRon package. ```{r class.source="watch-out", eval = FALSE} library(VoltRon) Xen_R1 <- importXenium("Xenium_R1/outs", sample_name = "XeniumR1", resolution_level = 3) Xen_R1_image <- importImageData("Xenium_FFPE_Human_Breast_Cancer_Rep1_he_image.tif", sample_name = "XeniumR1image", image_name = "H&E") ```
We can save both Xenium and H&E (image) datasets to disk before using the mini Shiny app for registration ```{r class.source="watch-out", eval = FALSE} Xen_R1_disk <- saveVoltRon(Xen_R1, format = "HDF5VoltRon", output = "data/Xen_R1_h5", replace = TRUE) Xen_R1_image_disk <- saveVoltRon(Xen_R1_image, format = "HDF5VoltRon", output = "data/Xen_R1_image_h5", replace = TRUE) ```
These disk-based datasets can then be loaded from the disk easily. ```{r class.source="watch-out", eval = FALSE} Xen_R1_disk <- loadVoltRon("../data/OnDisk/Xen_R1_h5/") Xen_R1_image_disk <- loadVoltRon("../data/OnDisk/Xen_R1_image_h5/") ```
VoltRon stores large images as pyramids to increase interactive visualization efficiency. This storage strategy allows shiny apps to zoom in to tissue niches in a speedy fashion. VoltRon incorporates `Image_Array` objects (https://github.com/BIMSBbioinfo/ImageArray) to define these pyramids. ```{r class.source="watch-out", eval = FALSE} vrImages(Xen_R1_image_disk, as.raster = TRUE) ``` ``` Image_Array Object Series 1 of size (3,27587,20511) Series 2 of size (3,13794,10256) Series 3 of size (3,6897,5128) Series 4 of size (3,3449,2564) Series 5 of size (3,1725,1282) Series 6 of size (3,863,641) Series 7 of size (3,432,321) ```
We can now visualize and align the Xenium and H&E objects. ```{r class.source="watch-out", eval = FALSE} # Align spatial data xen_reg <- registerSpatialData(object_list = list(Xen_R1_disk, Xen_R1_image_disk)) ```

```{r class.source="watch-out", eval = FALSE} # transfer aligned H&E to Xenium data Xenium_reg <- xen_reg$registered_spat[[2]] vrImages(Xen_R1_disk[["Assay1"]], name = "main", channel = "H&E") <- vrImages(Xenium_reg, name = "H&E_reg") # visualize vrImages(Xen_R1_disk, channel = "H&E", scale.perc = 10) ```