[413088]: / docs / nicheclustering.html

Download this file

867 lines (768 with data), 32.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Niche Clustering</title>
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/font-awesome-6.5.2/css/all.min.css" rel="stylesheet" />
<link href="site_libs/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet" />
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "\e259";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "\e258";
font-family: 'Glyphicons Halflings';
border: none;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
@media print {
.toc-content {
/* see https://github.com/w3c/csswg-drafts/issues/4434 */
float: right;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
}
.tocify .list-group-item {
border-radius: 0px;
}
.tocify-subheader {
display: inline;
}
.tocify-subheader .tocify-item {
font-size: 0.95em;
}
</style>
</head>
<body>
<div class="container-fluid main-container">
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">VoltRon</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="tutorials.html">Explore</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Vignette
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Spatial Data Integration</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="registration.html">Spatial Data Alignment</a>
</li>
<li>
<a href="multiomic.html">Multi-omic Integration</a>
</li>
<li>
<a href="nicheclustering.html">Niche Clustering</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Downstream Analysis</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="roianalysis.html">ROI Analysis</a>
</li>
<li>
<a href="spotanalysis.html">Cell/Spot Analysis</a>
</li>
<li>
<a href="moleculeanalysis.html">Molecule Analysis</a>
</li>
<li>
<a href="pixelanalysis.html">Pixels (Image Only) Analysis</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Utilities</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="interactive.html">Interactive Utilities</a>
</li>
<li>
<a href="importingdata.html">Importing Spatial Data</a>
</li>
<li>
<a href="voltronobjects.html">Working with VoltRon Objects</a>
</li>
<li>
<a href="conversion.html">Converting VoltRon Objects</a>
</li>
<li>
<a href="ondisk.html">OnDisk-based Analysis Utilities</a>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-envelope-o"></span>
Contact
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://bioinformatics.mdc-berlin.de">Altuna Lab/BIMSB Bioinfo</a>
</li>
<li>
<a href="https://www.mdc-berlin.de/landthaler">Landthaler Lab/BIMSB</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-github"></span>
GitHub
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://github.com/BIMSBbioinfo/VoltRon">VoltRon</a>
</li>
<li>
<a href="https://github.com/BIMSBbioinfo">BIMSB Bioinfo</a>
</li>
</ul>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<h1 class="title toc-ignore">Niche Clustering</h1>
</div>
<style>
.title{
display: none;
}
body {
text-align: justify
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
}
</style>
<style type="text/css">
.watch-out {
color: black;
}
</style>
<p><br></p>
<div id="spot-based-niche-clustering" class="section level1">
<h1>Spot-based Niche Clustering</h1>
<p>Spot-based spatial transcriptomic assays capture spatially-resolved
gene expression profiles that are somewhat closer to single cell
resolution. However, each spot still includes a few number of cells that
are likely originated from few number of cell types, hence
transcriptomic profile of each spot would likely include markers from
multiple cell types. Here, <strong>RNA deconvolution</strong> can be
incorporated to estimate the percentage/abundance of cell types for each
spot. We use a scRNAseq dataset as a reference to computationally
estimate the relative abundance of cell types across across the
spots.</p>
<p>VoltRon includes wrapper commands for using popular spot-level RNA
deconvolution methods such as <a
href="https://www.nature.com/articles/s41587-021-00830-w">RCTD</a> and
return estimated abundances as additional feature sets within each
layer. These estimated percentages of cell types for each spot could be
incorporated to detect <strong>niches</strong> (i.e. small local
microenvironments of cells) within the tissue. We can process cell type
abundance assays and used them for clustering to detect these
niches.</p>
<p><br></p>
<div id="import-visium-data" class="section level2">
<h2>Import Visium Data</h2>
<p>For this tutorial we will analyze spot-based transcriptomic assays
from Mouse Brain generated by the <a
href="https://www.10xgenomics.com/products/spatial-gene-expression">Visium</a>
instrument.</p>
<p>You can find and download readouts of all four Visium sections <a
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Cellanalysis/Visium/MouseBrainSerialSections.zip">here</a>.
The <strong>Mouse Brain Serial Section 1/2</strong> datasets can be also
downloaded from <a
href="https://www.10xgenomics.com/resources/datasets?menu%5Bproducts.name%5D=Spatial%20Gene%20Expression&amp;query=&amp;page=1&amp;configure%5BhitsPerPage%5D=50&amp;configure%5BmaxValuesPerFacet%5D=1000">here</a>
(specifically, please filter for <strong>Species=Mouse</strong>,
<strong>AnatomicalEntity=brain</strong>, <strong>Chemistry=v1</strong>
and <strong>PipelineVersion=v1.1.0</strong>).</p>
<p>We will now import each of four samples separately and merge them
into one VoltRon object. There are four brain tissue sections in total
given two serial anterior and serial posterior sections, hence we have
<strong>two tissue blocks each having two layers</strong>.</p>
<pre class="r watch-out"><code>library(VoltRon)
Ant_Sec1 &lt;- importVisium(&quot;Sagittal_Anterior/Section1/&quot;, sample_name = &quot;Anterior1&quot;)
Ant_Sec2 &lt;- importVisium(&quot;Sagittal_Anterior/Section2/&quot;, sample_name = &quot;Anterior2&quot;)
Pos_Sec1 &lt;- importVisium(&quot;Sagittal_Posterior/Section1/&quot;, sample_name = &quot;Posterior1&quot;)
Pos_Sec2 &lt;- importVisium(&quot;Sagittal_Posterior/Section2/&quot;, sample_name = &quot;Posterior2&quot;)
# merge datasets
MBrain_Sec_list &lt;- list(Ant_Sec1, Ant_Sec2, Pos_Sec1, Pos_Sec2)
MBrain_Sec &lt;- merge(MBrain_Sec_list[[1]], MBrain_Sec_list[-1],
samples = c(&quot;Anterior&quot;, &quot;Anterior&quot;, &quot;Posterior&quot;, &quot;Posterior&quot;))
MBrain_Sec</code></pre>
<pre><code>VoltRon Object
Anterior:
Layers: Section1 Section2
Posterior:
Layers: Section1 Section2
Assays: Visium(Main)
Features: RNA(Main) </code></pre>
<p>VoltRon maps metadata features on the spatial images, multiple
features can be provided for all assays/layers associated with the main
assay (Visium).</p>
<pre class="r watch-out"><code>vrSpatialFeaturePlot(MBrain_Sec, features = &quot;Count&quot;, crop = TRUE, alpha = 1, ncol = 2)</code></pre>
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_first_plot.png" class="center"></p>
<p><br></p>
</div>
<div id="import-scrna-data" class="section level2">
<h2>Import scRNA data</h2>
<p>We will now import the scRNA data for reference which can be
downloaded from <a
href="https://www.dropbox.com/s/cuowvm4vrf65pvq/allen_cortex.rds?dl=1">here</a>.
Specifically, we will use a scRNA data of Mouse cortical adult brain
with 14,000 cells, generated with the SMART-Seq2 protocol, from the
Allen Institute. This scRNA data is also used by the Spatial Data
Analysis tutorial in <a
href="https://satijalab.org/seurat/articles/spatial_vignette.html#integration-with-single-cell-data">Seurat</a>
website.</p>
<pre class="r watch-out"><code># install packages if necessary
if(!requireNamespace(&quot;Seurat&quot;))
install.packages(&quot;Seurat&quot;)
if(!requireNamespace(&quot;dplyr&quot;))
install.packages(&quot;dplyr&quot;)
# import scRNA data
library(Seurat)
allen_reference &lt;- readRDS(&quot;allen_cortex.rds&quot;)
# process and reduce dimensionality
library(dplyr)
allen_reference &lt;- SCTransform(allen_reference, ncells = 3000, verbose = FALSE) %&gt;%
RunPCA(verbose = FALSE) %&gt;%
RunUMAP(dims = 1:30)</code></pre>
<p>Before deconvoluting Visium spots, we correct cell types labels and
drop some cell types with extremely few number of cells (e.g. “CR”).</p>
<pre class="r watch-out"><code># update labels and subset
allen_reference$subclass &lt;- gsub(&quot;L2/3 IT&quot;, &quot;L23 IT&quot;, allen_reference$subclass)
allen_reference &lt;- allen_reference[,colnames(allen_reference)[!allen_reference@meta.data$subclass %in% &quot;CR&quot;]]
# visualize
Idents(allen_reference) &lt;- &quot;subclass&quot;
gsubclass &lt;- DimPlot(allen_reference, reduction = &quot;umap&quot;, label = T) + NoLegend()
Idents(allen_reference) &lt;- &quot;class&quot;
gclass &lt;- DimPlot(allen_reference, reduction = &quot;umap&quot;, label = T) + NoLegend()
gsubclass | gclass</code></pre>
<p><img width="95%" height="95%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_singlecell.png" class="center"></p>
<p><br></p>
</div>
<div id="spot-deconvolution-with-rctd" class="section level2">
<h2>Spot Deconvolution with RCTD</h2>
<p>In order to integrate the scRNA data and the spatial data sets within
the VoltRon object and estimate relative cell type abundances for each
Visium spot, we will use <strong>RCTD</strong> algorithm which is
accessible with the <a
href="https://github.com/dmcable/spacexr">spacexr</a> package.</p>
<pre class="r watch-out"><code>if(!requireNamespace(&quot;spacexr&quot;))
devtools::install_github(&quot;dmcable/spacexr&quot;, build_vignettes = FALSE)</code></pre>
<p>After running <strong>getDeconvolution</strong>, an additional
feature set within the same Visium assay with name
<strong>Decon</strong> will be created.</p>
<pre class="r watch-out"><code>library(spacexr)
MBrain_Sec &lt;- getDeconvolution(MBrain_Sec, sc.object = allen_reference, sc.cluster = &quot;subclass&quot;, max_cores = 6)
MBrain_Sec</code></pre>
<pre><code>VoltRon Object
Anterior:
Layers: Section1 Section2
Posterior:
Layers: Section1 Section2
Assays: Visium(Main)
Features: RNA(Main) Decon </code></pre>
<p>We can now switch to the <strong>Decon</strong> feature type where
features are cell types from the scRNA reference and the data values are
cell types percentages in each spot.</p>
<pre class="r watch-out"><code>vrMainFeatureType(MBrain_Sec) &lt;- &quot;Decon&quot;
vrFeatures(MBrain_Sec)</code></pre>
<pre><code> [1] &quot;Astro&quot; &quot;Endo&quot; &quot;L23 IT&quot; &quot;L4&quot; &quot;L5 IT&quot; &quot;L5 PT&quot;
[7] &quot;L6 CT&quot; &quot;L6 IT&quot; &quot;L6b&quot; &quot;Lamp5&quot; &quot;Macrophage&quot; &quot;Meis2&quot;
[13] &quot;NP&quot; &quot;Oligo&quot; &quot;Peri&quot; &quot;Pvalb&quot; &quot;Serpinf1&quot; &quot;SMC&quot;
[19] &quot;Sncg&quot; &quot;Sst&quot; &quot;Vip&quot; &quot;VLMC&quot; </code></pre>
<p>These features (i.e. cell type abundances) can be visualized like any
other feature type.</p>
<pre class="r watch-out"><code>vrSpatialFeaturePlot(MBrain_Sec, features = c(&quot;L4&quot;, &quot;L5 PT&quot;, &quot;Oligo&quot;, &quot;Vip&quot;),
crop = TRUE, ncol = 2, alpha = 1, keep.scale = &quot;all&quot;)</code></pre>
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_spatialfeature_plot.png" class="center"></p>
<p><br></p>
</div>
<div id="clustering" class="section level2">
<h2>Clustering</h2>
<p>Relative cell type abundances that are learned by RCTD and stored
within VoltRon can now be used to cluster spots. These groups or
clusters of spots can often be referred to as <strong>niches</strong>.
Here, as a definition, a niche is a region or a collection of regions
within tissue that have a distinct cell type composition as opposed to
the remaining parts of the tissue.</p>
<p>The cell type abundances (which adds up to one for each spot) can be
normalized and processed like transcriptomic and proteomic profiles
prior to clustering (i.e. niche clustering). We treat cell type
abundances as <a
href="https://en.wikipedia.org/wiki/Compositional_data">compositional
data</a>, hence we incorporate <strong>centred log ratio (CLR)</strong>
transformation for normalizing them.</p>
<pre class="r watch-out"><code>vrMainFeatureType(MBrain_Sec) &lt;- &quot;Decon&quot;
MBrain_Sec &lt;- normalizeData(MBrain_Sec, method = &quot;CLR&quot;)</code></pre>
<p>The CLR normalized assay have only 25 features, each representing a
cell type from the single cell reference data. Hence, we can
<strong>directly calculate UMAP reductions from this feature
abundances</strong> since we dont have much number of features which
necessitates dimensionality reduction such as PCA.</p>
<p>However, we may still need to reduce the dimensionality of this space
with 25 features using UMAP for visualizing purposes. VoltRon is also
capable of calculating the UMAP reduction from normalized data slots.
Hence, we build a UMAP reduction from CLR data directly. However, UMAP
will always be calculated from a PCA reduction by default (if a PCA
embedding is found in the object).</p>
<pre class="r watch-out"><code>MBrain_Sec &lt;- getUMAP(MBrain_Sec, data.type = &quot;norm&quot;)
vrEmbeddingPlot(MBrain_Sec, embedding = &quot;umap&quot;, group.by = &quot;Sample&quot;)</code></pre>
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_embedding_sample.png" class="center"></p>
<p><br></p>
<p>Using normalized cell type abundances, we can now generate k-nearest
neighbor graphs and cluster the graph using leiden method.</p>
<pre class="r watch-out"><code>MBrain_Sec &lt;- getProfileNeighbors(MBrain_Sec, data.type = &quot;norm&quot;, method = &quot;SNN&quot;)
vrGraphNames(MBrain_Sec)</code></pre>
<pre><code>[1] &quot;SNN&quot;</code></pre>
<pre class="r watch-out"><code>MBrain_Sec &lt;- getClusters(MBrain_Sec, resolution = 0.6, graph = &quot;SNN&quot;)</code></pre>
<p><br></p>
</div>
<div id="visualization" class="section level2">
<h2>Visualization</h2>
<p>VoltRon incorporates distinct plotting functions for,
e.g. embeddings, coordinates, heatmap and even barplots. We can now map
the clusters we have generated on UMAP embeddings.</p>
<pre class="r watch-out"><code># visualize
g1 &lt;- vrEmbeddingPlot(MBrain_Sec, embedding = &quot;umap&quot;, group.by = &quot;Sample&quot;)
g2 &lt;- vrEmbeddingPlot(MBrain_Sec, embedding = &quot;umap&quot;, group.by = &quot;niche_clusters&quot;, label = TRUE)
g1 | g2</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_embedding_clusters.png" class="center"></p>
<p><br></p>
<p>Mapping clusters on the spatial images and spots would show the niche
structure across all four tissue sections.</p>
<pre class="r watch-out"><code>vrSpatialPlot(MBrain_Sec, group.by = &quot;niche_clusters&quot;, crop = TRUE, alpha = 1)</code></pre>
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_spatial_clusters.png" class="center"></p>
<p><br></p>
<p>We use <strong>vrHeatmapPlot</strong> to investigate relative cell
type abundances across these niche clusters. You will need to have
<strong>ComplexHeatmap</strong> package in your namespace.</p>
<pre class="r watch-out"><code># install packages if necessary
if(!requireNamespace(&quot;ComplexHeatmap&quot;))
BiocManager::install(&quot;ComplexHeatmap&quot;)
# heatmap of niches
library(ComplexHeatmap)
vrHeatmapPlot(MBrain_Sec, features = vrFeatures(MBrain_Sec), group.by = &quot;niche_clusters&quot;,
show_row_names = T, show_heatmap_legend = T)</code></pre>
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_heatmap_clusters.png" class="center">
<br></p>
</div>
</div>
<div id="cell-based-niche-clustering" class="section level1">
<h1>Cell-based Niche Clustering</h1>
<p>Similar to spot-based spatial omics assays, we can build and cluster
niche associated to each cell for spatial transcriptomics datasets in
single cell resolution. For this, we require building niche assays for
the collections of cells where a niche of cell is defined as a region of
sets of regions with distinct cell type population that each of these
cells belong to.</p>
<p>Here, we dont require any scRNA reference dataset but we may first
need to cluster and annotate cells in the RNA/transcriptome level
profiles, and determine cell types. Then, we first detect the mixture of
cell types within a spatial neighborhood around all cells and use that
as a profile to perform clustering where these clusters will be
associated with niches.</p>
<div id="import-xenium-data" class="section level2">
<h2>Import Xenium Data</h2>
<p>For this, the data has to be already clustered (and annotated if
possible). We will use the cluster labels generated at the end of the
Xenium analysis workflow from <a href="spotanalysis.html">Cell/Spot
Analysis</a>. You can download the VoltRon object with clustered and
annotated Xenium cells along with the Visium assay from <a
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/SpatialDataAlignment/Xenium_vs_Visium/VRBlock_data_clustered.rds">here</a>.</p>
<pre class="r watch-out"><code>Xen_data &lt;- readRDS(&quot;VRBlock_data_clustered.rds&quot;)</code></pre>
<p>We will use all these 18 cell types used for annotating Xenium cells
for detecting niches with distinct cellular type mixtures.</p>
<pre class="r watch-out"><code>vrMainSpatial(Xen_data, assay = &quot;Assay1&quot;) &lt;- &quot;main&quot;
vrMainSpatial(Xen_data, assay = &quot;Assay3&quot;) &lt;- &quot;main&quot;
vrSpatialPlot(Xen_data, group.by = &quot;CellType&quot;, pt.size = 0.13, background.color = &quot;black&quot;,
legend.loc = &quot;top&quot;, n.tile = 500)</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_xenium_clusters.png" class="center"></p>
<p><br></p>
</div>
<div id="creating-niche-assay" class="section level2">
<h2>Creating Niche Assay</h2>
<p>For calculating niche profiles for each cell, we have to first build
spatial neighborhoods around cells and capture the local cell type
mixtures. Using <strong>getSpatialNeighbors</strong>, we build a spatial
neighborhood graph to connect all cells to other cells within at most 15
distance apart.</p>
<pre class="r watch-out"><code>Xen_data &lt;- getSpatialNeighbors(Xen_data, radius = 15, method = &quot;radius&quot;)
vrGraphNames(Xen_data)</code></pre>
<pre><code>[1] &quot;radius&quot;</code></pre>
<p>Now, we can build a niche assay for cells using the
<strong>getNicheAssay</strong> function which will create an additional
feature set for cells called <strong>Niche</strong>. Here, each cell
type is a feature and the profile of a cell represents the relative
abundance of cell types around each cell.</p>
<pre class="r watch-out"><code>Xen_data &lt;- getNicheAssay(Xen_data, label = &quot;CellType&quot;, graph.type = &quot;radius&quot;)
Xen_data</code></pre>
<pre><code>VoltRon Object
10XBlock:
Layers: Section1 Section2 Section3
Assays: Xenium(Main) Visium
Features: RNA(Main) Niche</code></pre>
<p><br></p>
</div>
<div id="clustering-1" class="section level2">
<h2>Clustering</h2>
<p>The Niche assay can be normalized similar to the spot-level niche
analysis using <strong>centred log ratio (CLR)</strong>
transformation.</p>
<pre class="r watch-out"><code>vrMainFeatureType(Xen_data) &lt;- &quot;Niche&quot;
Xen_data &lt;- normalizeData(Xen_data, method = &quot;CLR&quot;)</code></pre>
<p>Default clustering functions could be used to analyze the normalized
niche profiles of cells to detect niches associated with each cell.
However, we use K-means algorithm to perform the niche clustering. For
this exercise, we pick an estimate of 7 clusters which will be the
number of niche clusters we get.</p>
<pre class="r watch-out"><code>Xen_data &lt;- getClusters(Xen_data, nclus = 7, method = &quot;kmeans&quot;, label = &quot;niche_clusters&quot;)</code></pre>
<p>After the niche clustering, the metadata is updated and observed
later like below.</p>
<pre class="r watch-out"><code>head(Metadata(Xen_data))</code></pre>
<div>
<pre><code style="font-size: 10px;"> id Count assay_id Assay Layer Sample CellType niche_clusters
1_Assay1 1_Assay1 28 Assay1 Xenium Section1 10XBlock DCIS_1 2
2_Assay1 2_Assay1 94 Assay1 Xenium Section1 10XBlock DCIS_2 2
3_Assay1 3_Assay1 9 Assay1 Xenium Section1 10XBlock DCIS_1 2
4_Assay1 4_Assay1 11 Assay1 Xenium Section1 10XBlock DCIS_1 2
5_Assay1 5_Assay1 48 Assay1 Xenium Section1 10XBlock DCIS_2 2
6_Assay1 6_Assay1 7 Assay1 Xenium Section1 10XBlock DCIS_1 2</code></pre>
</div>
<p><br></p>
</div>
<div id="visualization-1" class="section level2">
<h2>Visualization</h2>
<p>After niche clustering, each cell in the Xenium assay will be
assigned a niche which is initially a number which indicates the ID of
each particular niche. It is up to the user to annotate, filter and
visualize these niches moving forward.</p>
<pre class="r watch-out"><code>vrSpatialPlot(Xen_data, group.by = &quot;niche_clusters&quot;, alpha = 1, legend.loc = &quot;top&quot;)</code></pre>
<p>We use <strong>vrHeatmapPlot</strong> to investigate the abundance of
each cell type across the niche clusters. You will need to have
<strong>ComplexHeatmap</strong> package in your namespace. We see that
niche cluster 1 include all invasive tumor subtypes (IT 1-3). We see
this for two subtypes of in situ ductal carcinoma (DCIS 1,2) subtypes as
well other than a third DCIS subcluster being within proximity to
myoepithelial cells. Niche cluster 6 also shows regions within the
breast cancer tissue where T cells and B cells are found together
abundantly.</p>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_xenium_nicheclusters.png" class="center">
<br></p>
<pre class="r watch-out"><code># install packages if necessary
if(!requireNamespace(&quot;ComplexHeatmap&quot;))
BiocManager::install(&quot;ComplexHeatmap&quot;)
# heatmap of niches
library(ComplexHeatmap)
vrHeatmapPlot(Xen_data, features = vrFeatures(Xen_data), group.by = &quot;niche_clusters&quot;)</code></pre>
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/decon_xenium_heatmapclusters.png" class="center">
<br></p>
</div>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// temporarily add toc-ignore selector to headers for the consistency with Pandoc
$('.unlisted.unnumbered').addClass('toc-ignore')
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_');
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = false;
options.smoothScroll = false;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>