|
a |
|
b/src/snn_graph.cpp |
|
|
1 |
#include "Rcpp.h" |
|
|
2 |
#include <deque> |
|
|
3 |
#include <algorithm> |
|
|
4 |
|
|
|
5 |
/* Adapted from bluster package |
|
|
6 |
* https://bioconductor.org/packages/release/bioc/html/bluster.html |
|
|
7 |
*/ |
|
|
8 |
|
|
|
9 |
/* The 'rank' version performs the original SNN clustering described by Xu and Su (2015, Bioinformatics). |
|
|
10 |
* This defines the weight between two nodes as (k - 0.5 * r), where r is the smallest sum of ranks for any node in both NN-sets. |
|
|
11 |
* The rank is computed separately in each NN set, with each node being 0-rank in its own set. |
|
|
12 |
*/ |
|
|
13 |
|
|
|
14 |
// [[Rcpp::export(rng=false)]] |
|
|
15 |
Rcpp::List build_snn_rank(Rcpp::IntegerMatrix neighbors) { |
|
|
16 |
const size_t k=neighbors.ncol(); |
|
|
17 |
const size_t ncells=neighbors.nrow(); |
|
|
18 |
|
|
|
19 |
// Building a host table, identifying the reverse relation from nearest neighbours to cells. |
|
|
20 |
auto mIt=neighbors.begin(); |
|
|
21 |
std::deque<std::deque<std::pair<size_t, int> > > hosts(ncells); |
|
|
22 |
for (size_t i=1; i<=k; ++i) { |
|
|
23 |
for (size_t j=0; j<ncells; ++j, ++mIt) { |
|
|
24 |
hosts[*mIt - 1].push_back(std::make_pair(i, j)); // Getting to 0-based index, keeping 1-based ranks for now. |
|
|
25 |
} |
|
|
26 |
} |
|
|
27 |
|
|
|
28 |
std::deque<int> output_pairs; |
|
|
29 |
std::deque<double> output_weights; |
|
|
30 |
std::deque<size_t> current_added; |
|
|
31 |
std::deque<size_t> current_score(ncells); |
|
|
32 |
|
|
|
33 |
for (size_t j=0; j<ncells; ++j) { |
|
|
34 |
auto rowtmp=neighbors.row(j); |
|
|
35 |
auto rtIt=rowtmp.begin(); |
|
|
36 |
|
|
|
37 |
int cur_neighbor; |
|
|
38 |
for (size_t i=0; i<=k; ++i) { |
|
|
39 |
if (i==0) { |
|
|
40 |
cur_neighbor=j; |
|
|
41 |
} else { |
|
|
42 |
// Adding the actual nearest neighbors for cell 'j'. |
|
|
43 |
cur_neighbor=*rtIt - 1; |
|
|
44 |
++rtIt; |
|
|
45 |
|
|
|
46 |
if (static_cast<size_t>(cur_neighbor) < j) { // avoid duplicates from symmetry in the SNN calculations. |
|
|
47 |
const size_t& currank=i; // +0, as neighbour 'i' is rank 0 with respect to itself. |
|
|
48 |
size_t& existing_other=current_score[cur_neighbor]; |
|
|
49 |
if (existing_other==0) { |
|
|
50 |
existing_other=currank; |
|
|
51 |
current_added.push_back(cur_neighbor); |
|
|
52 |
} else if (existing_other > currank) { |
|
|
53 |
existing_other=currank; |
|
|
54 |
} |
|
|
55 |
} |
|
|
56 |
} |
|
|
57 |
|
|
|
58 |
// Adding the cells connected by shared nearest neighbors, again recording the lowest combined rank per neighbor. |
|
|
59 |
const auto& hosted=hosts[cur_neighbor]; |
|
|
60 |
for (auto hIt=hosted.begin(); hIt!=hosted.end(); ++hIt) { |
|
|
61 |
const int& othernode=hIt->second; |
|
|
62 |
|
|
|
63 |
if (static_cast<size_t>(othernode) < j) { // avoid duplicates from symmetry in the SNN calculations. |
|
|
64 |
size_t currank=hIt->first + i; |
|
|
65 |
size_t& existing_other=current_score[othernode]; |
|
|
66 |
if (existing_other==0) { |
|
|
67 |
existing_other=currank; |
|
|
68 |
current_added.push_back(othernode); |
|
|
69 |
} else if (existing_other > currank) { |
|
|
70 |
existing_other=currank; |
|
|
71 |
} |
|
|
72 |
} |
|
|
73 |
} |
|
|
74 |
} |
|
|
75 |
|
|
|
76 |
for (auto othernode : current_added) { |
|
|
77 |
// Converting to edges. |
|
|
78 |
output_pairs.push_back(j + 1); |
|
|
79 |
output_pairs.push_back(othernode + 1); |
|
|
80 |
|
|
|
81 |
// Ensuring that an edge with a positive weight is always reported. |
|
|
82 |
size_t& otherscore=current_score[othernode]; |
|
|
83 |
double finalscore = static_cast<double>(k) - 0.5 * static_cast<double>(otherscore); |
|
|
84 |
output_weights.push_back(std::max(finalscore, 1e-6)); |
|
|
85 |
|
|
|
86 |
// Resetting all those added to zero. |
|
|
87 |
otherscore=0; |
|
|
88 |
} |
|
|
89 |
current_added.clear(); |
|
|
90 |
} |
|
|
91 |
|
|
|
92 |
Rcpp::IntegerVector pout(output_pairs.begin(), output_pairs.end()); |
|
|
93 |
Rcpp::NumericVector wout(output_weights.begin(), output_weights.end()); |
|
|
94 |
return Rcpp::List::create(pout, wout); |
|
|
95 |
} |
|
|
96 |
|
|
|
97 |
/* The 'number' version performs a much simpler SNN clustering. |
|
|
98 |
* Here, the weight between two nodes is simply the number of shared nodes in both NN-sets. |
|
|
99 |
* Each node is also included in its own set, yielding a range of [0, k+1] weights. |
|
|
100 |
*/ |
|
|
101 |
|
|
|
102 |
// [[Rcpp::export(rng=false)]] |
|
|
103 |
Rcpp::List build_snn_number(Rcpp::IntegerMatrix neighbors) { |
|
|
104 |
const size_t k=neighbors.ncol(); |
|
|
105 |
const size_t ncells=neighbors.nrow(); |
|
|
106 |
|
|
|
107 |
// Building a host table, identifying the reverse relation from nearest neighbours to cells. |
|
|
108 |
auto mIt=neighbors.begin(); |
|
|
109 |
std::deque<std::deque<size_t> > hosts(ncells); |
|
|
110 |
for (size_t i=1; i<=k; ++i) { |
|
|
111 |
for (size_t j=0; j<ncells; ++j, ++mIt) { |
|
|
112 |
hosts[*mIt - 1].push_back(j); // Getting to 0-based index. |
|
|
113 |
} |
|
|
114 |
} |
|
|
115 |
|
|
|
116 |
std::deque<int> output_pairs; |
|
|
117 |
std::deque<double> output_weights; |
|
|
118 |
std::deque<size_t> current_added; |
|
|
119 |
std::deque<size_t> current_score(ncells); |
|
|
120 |
|
|
|
121 |
for (size_t j=0; j<ncells; ++j) { |
|
|
122 |
auto rowtmp=neighbors.row(j); |
|
|
123 |
auto rtIt=rowtmp.begin(); |
|
|
124 |
|
|
|
125 |
int cur_neighbor; |
|
|
126 |
for (size_t i=0; i<=k; ++i) { |
|
|
127 |
if (i==0) { |
|
|
128 |
cur_neighbor=j; |
|
|
129 |
} else { |
|
|
130 |
// Adding the actual nearest neighbors for cell 'j'. |
|
|
131 |
cur_neighbor=*rtIt - 1; |
|
|
132 |
++rtIt; |
|
|
133 |
|
|
|
134 |
if (static_cast<size_t>(cur_neighbor) < j) { // avoid duplicates from symmetry in the SNN calculations. |
|
|
135 |
size_t& existing_other=current_score[cur_neighbor]; |
|
|
136 |
if (existing_other==0) { |
|
|
137 |
current_added.push_back(cur_neighbor); |
|
|
138 |
} |
|
|
139 |
++existing_other; |
|
|
140 |
} |
|
|
141 |
} |
|
|
142 |
|
|
|
143 |
// Adding the cells connected by shared nearest neighbors, recording the number. |
|
|
144 |
const auto& hosted=hosts[cur_neighbor]; |
|
|
145 |
for (auto hIt=hosted.begin(); hIt!=hosted.end(); ++hIt) { |
|
|
146 |
const int& othernode=*hIt; |
|
|
147 |
|
|
|
148 |
if (static_cast<size_t>(othernode) < j) { // avoid duplicates from symmetry in the SNN calculations. |
|
|
149 |
size_t& existing_other=current_score[othernode]; |
|
|
150 |
if (existing_other==0) { |
|
|
151 |
current_added.push_back(othernode); |
|
|
152 |
} |
|
|
153 |
++existing_other; |
|
|
154 |
} |
|
|
155 |
} |
|
|
156 |
} |
|
|
157 |
|
|
|
158 |
for (auto othernode : current_added) { |
|
|
159 |
// Converting to edges. |
|
|
160 |
output_pairs.push_back(j + 1); |
|
|
161 |
output_pairs.push_back(othernode + 1); |
|
|
162 |
|
|
|
163 |
// Ensuring that an edge with a positive weight is always reported. |
|
|
164 |
size_t& otherscore=current_score[othernode]; |
|
|
165 |
output_weights.push_back(std::max(static_cast<double>(otherscore), 1e-6)); |
|
|
166 |
|
|
|
167 |
// Resetting all those added to zero. |
|
|
168 |
otherscore=0; |
|
|
169 |
} |
|
|
170 |
current_added.clear(); |
|
|
171 |
} |
|
|
172 |
|
|
|
173 |
Rcpp::IntegerVector pout(output_pairs.begin(), output_pairs.end()); |
|
|
174 |
Rcpp::NumericVector wout(output_weights.begin(), output_weights.end()); |
|
|
175 |
return Rcpp::List::create(pout, wout); |
|
|
176 |
} |