|
a |
|
b/src/automated_registration.cpp |
|
|
1 |
#include <Rcpp.h> |
|
|
2 |
|
|
|
3 |
// OpenCV |
|
|
4 |
#include <opencv2/opencv.hpp> |
|
|
5 |
#include "opencv2/xfeatures2d.hpp" |
|
|
6 |
#include "opencv2/features2d.hpp" |
|
|
7 |
#include "opencv2/shape/shape_transformer.hpp" |
|
|
8 |
// #include <opencv2/imgproc.hpp> |
|
|
9 |
|
|
|
10 |
// Internal functions |
|
|
11 |
#include "auxiliary.h" |
|
|
12 |
#include "image.h" |
|
|
13 |
|
|
|
14 |
// Namespaces |
|
|
15 |
using namespace Rcpp; |
|
|
16 |
using namespace std; |
|
|
17 |
using namespace cv; |
|
|
18 |
using namespace cv::xfeatures2d; |
|
|
19 |
|
|
|
20 |
// check if keypoints are degenerate |
|
|
21 |
std::string check_degenerate(std::vector<cv::KeyPoint> keypoints1, std::vector<cv::KeyPoint> keypoints2) { |
|
|
22 |
|
|
|
23 |
// get sd |
|
|
24 |
double keypoints1_sd = cppSD(keypoints1); |
|
|
25 |
double keypoints2_sd = cppSD(keypoints2); |
|
|
26 |
|
|
|
27 |
// get warning message |
|
|
28 |
std::string message; |
|
|
29 |
if(keypoints1_sd < 1.0 | keypoints2_sd < 1.0){ |
|
|
30 |
message = "degenarate"; |
|
|
31 |
Rcout << "WARNING: points may be in a degenerate configuration." << endl; |
|
|
32 |
} else { |
|
|
33 |
message = "not degenarate"; |
|
|
34 |
} |
|
|
35 |
|
|
|
36 |
return message; |
|
|
37 |
} |
|
|
38 |
|
|
|
39 |
// // check transformation of points |
|
|
40 |
// std::string check_transformation_by_pts_mean_sqrt(std::vector<cv::KeyPoint> keypoints1, std::vector<cv::KeyPoint> keypoints2, Mat &h, Mat &mask){ |
|
|
41 |
// |
|
|
42 |
// // perspective transformation of query keypoints |
|
|
43 |
// std::vector<cv::Point2f> keypoints1_reg; |
|
|
44 |
// cv::perspectiveTransform(keypoints1, keypoints1_reg, h); |
|
|
45 |
// |
|
|
46 |
// } |
|
|
47 |
|
|
|
48 |
// check distribution of registered points |
|
|
49 |
std::string check_transformation_by_point_distribution(Mat &im, Mat &h){ |
|
|
50 |
|
|
|
51 |
// get image shape |
|
|
52 |
int height = im.rows; |
|
|
53 |
int width = im.cols; |
|
|
54 |
int height_interval = (double) height/50.0; |
|
|
55 |
int width_interval = (double) width/50.0; |
|
|
56 |
|
|
|
57 |
// perspective transformation of grid points |
|
|
58 |
std::vector<cv::Point2f> gridpoints; |
|
|
59 |
for (double i = 0.0; i <= height; i += height_interval) { |
|
|
60 |
for (double j = 0.0; j <= width; j += width_interval) { |
|
|
61 |
gridpoints.push_back(cv::Point2f(j,i)); |
|
|
62 |
} |
|
|
63 |
} |
|
|
64 |
|
|
|
65 |
// register grid points |
|
|
66 |
std::vector<cv::Point2f> gridpoints_reg; |
|
|
67 |
cv::perspectiveTransform(gridpoints, gridpoints_reg, h); |
|
|
68 |
|
|
|
69 |
// Compute the standard deviation of the transformed points |
|
|
70 |
double gridpoints_reg_sd = cppSD(gridpoints_reg); |
|
|
71 |
|
|
|
72 |
// get warning message |
|
|
73 |
std::string message; |
|
|
74 |
if(gridpoints_reg_sd < 1.0 | gridpoints_reg_sd > max(height, width)){ |
|
|
75 |
message = "large distribution"; |
|
|
76 |
Rcout << "WARNING: Transformation may be poor - transformed points grid seem to be concentrated!" << endl; |
|
|
77 |
} else { |
|
|
78 |
message = "small distribution"; |
|
|
79 |
} |
|
|
80 |
|
|
|
81 |
return message; |
|
|
82 |
} |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
// do overall checks on keypoints and images |
|
|
86 |
std::string check_transformation_metrics(std::vector<cv::KeyPoint> keypoints1, std::vector<cv::KeyPoint> keypoints2, Mat &im1, Mat &im2, Mat &h, Mat &mask) { |
|
|
87 |
|
|
|
88 |
// check keypoint standard deviation |
|
|
89 |
std::string degenerate; |
|
|
90 |
degenerate = check_degenerate(keypoints1, keypoints2); |
|
|
91 |
|
|
|
92 |
// check transformation |
|
|
93 |
// std::string transformation; |
|
|
94 |
// transformation = check_transformation_by_pts_mean_sqrt(keypoints1, keypoints2, h, mask); |
|
|
95 |
|
|
|
96 |
// check distribution |
|
|
97 |
std::string distribution; |
|
|
98 |
distribution = check_transformation_by_point_distribution(im2, h); |
|
|
99 |
|
|
|
100 |
return degenerate; |
|
|
101 |
} |
|
|
102 |
|
|
|
103 |
// get good matching keypoints |
|
|
104 |
void getGoodMatches(std::vector<std::vector<DMatch>> matches, std::vector<DMatch> &good_matches, const float lowe_ratio = 0.8) |
|
|
105 |
{ |
|
|
106 |
for (size_t i = 0; i < matches.size(); i++) { |
|
|
107 |
if (matches[i][0].distance < lowe_ratio * matches[i][1].distance) { |
|
|
108 |
good_matches.push_back(matches[i][0]); |
|
|
109 |
} |
|
|
110 |
} |
|
|
111 |
} |
|
|
112 |
|
|
|
113 |
// remove duplicate keypoints for TPS |
|
|
114 |
void removeCloseMatches(std::vector<cv::Point2f>& points1, std::vector<cv::Point2f>& points2, float threshold = std::numeric_limits<float>::epsilon()) { |
|
|
115 |
|
|
|
116 |
// Create a vector to store filtered points |
|
|
117 |
std::vector<cv::Point2f> filtered_points1; |
|
|
118 |
std::vector<cv::Point2f> filtered_points2; |
|
|
119 |
|
|
|
120 |
// Iterate through the points |
|
|
121 |
for (size_t i = 0; i < points1.size(); ++i) { |
|
|
122 |
bool is_close = false; |
|
|
123 |
|
|
|
124 |
// Compare the current point with all already filtered points |
|
|
125 |
for (size_t j = 0; j < filtered_points1.size(); ++j) { |
|
|
126 |
float dist_squared1 = (points1[i].x - filtered_points1[j].x) * (points1[i].x - filtered_points1[j].x) + |
|
|
127 |
(points1[i].y - filtered_points1[j].y) * (points1[i].y - filtered_points1[j].y); |
|
|
128 |
float dist_squared2 = (points2[i].x - filtered_points2[j].x) * (points2[i].x - filtered_points2[j].x) + |
|
|
129 |
(points2[i].y - filtered_points2[j].y) * (points2[i].y - filtered_points2[j].y); |
|
|
130 |
|
|
|
131 |
// If the distance is less than the threshold (considered close), break |
|
|
132 |
if (dist_squared1 < threshold | dist_squared2 < threshold) { |
|
|
133 |
is_close = true; |
|
|
134 |
break; |
|
|
135 |
} |
|
|
136 |
} |
|
|
137 |
|
|
|
138 |
// If no close point was found, add the current point to the filtered list |
|
|
139 |
if (!is_close) { |
|
|
140 |
filtered_points1.push_back(points1[i]); |
|
|
141 |
filtered_points2.push_back(points2[i]); |
|
|
142 |
} |
|
|
143 |
} |
|
|
144 |
|
|
|
145 |
// Update the original point set with the filtered points |
|
|
146 |
points1 = filtered_points1; |
|
|
147 |
points2 = filtered_points2; |
|
|
148 |
} |
|
|
149 |
|
|
|
150 |
// align images with BRUTE FORCE algorithm |
|
|
151 |
void alignImagesBRUTE(Mat &im1, Mat &im2, Mat &im1Reg, Mat &im1Overlay, Mat &imMatches, Mat &h, const float GOOD_MATCH_PERCENT, const int MAX_FEATURES) |
|
|
152 |
{ |
|
|
153 |
// Convert images to grayscale |
|
|
154 |
Mat im1Gray, im2Gray; |
|
|
155 |
cvtColor(im1, im1Gray, cv::COLOR_BGR2GRAY); |
|
|
156 |
cvtColor(im2, im2Gray, cv::COLOR_BGR2GRAY); |
|
|
157 |
|
|
|
158 |
// Variables to store keypoints and descriptors |
|
|
159 |
std::vector<KeyPoint> keypoints1, keypoints2; |
|
|
160 |
Mat descriptors1, descriptors2; |
|
|
161 |
|
|
|
162 |
// Detect ORB features and compute descriptors. |
|
|
163 |
Ptr<Feature2D> orb = ORB::create(MAX_FEATURES); |
|
|
164 |
orb->detectAndCompute(im1Gray, Mat(), keypoints1, descriptors1); |
|
|
165 |
orb->detectAndCompute(im2Gray, Mat(), keypoints2, descriptors2); |
|
|
166 |
Rcout << "DONE: orb based key-points detection and descriptors computation" << endl; |
|
|
167 |
|
|
|
168 |
// Match features. |
|
|
169 |
std::vector<DMatch> matches; |
|
|
170 |
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming"); |
|
|
171 |
matcher->match(descriptors1, descriptors2, matches, Mat()); |
|
|
172 |
Rcout << "DONE: BruteForce-Hamming - descriptor matching" << endl; |
|
|
173 |
|
|
|
174 |
// Sort matches by score |
|
|
175 |
std::sort(matches.begin(), matches.end()); |
|
|
176 |
|
|
|
177 |
// Remove not so good matches |
|
|
178 |
const int numGoodMatches = matches.size() * GOOD_MATCH_PERCENT; |
|
|
179 |
matches.erase(matches.begin()+numGoodMatches, matches.end()); |
|
|
180 |
Rcout << "DONE: get good matches by distance thresholding" << endl; |
|
|
181 |
|
|
|
182 |
// Extract location of good matches |
|
|
183 |
std::vector<Point2f> points1, points2; |
|
|
184 |
for( size_t i = 0; i < matches.size(); i++ ) |
|
|
185 |
{ |
|
|
186 |
points1.push_back( keypoints1[ matches[i].queryIdx ].pt ); |
|
|
187 |
points2.push_back( keypoints2[ matches[i].trainIdx ].pt ); |
|
|
188 |
} |
|
|
189 |
|
|
|
190 |
// Find homography |
|
|
191 |
h = findHomography(points1, points2, RANSAC); |
|
|
192 |
Rcout << "DONE: calculated homography matrix" << endl; |
|
|
193 |
|
|
|
194 |
// Extract location of good matches in terms of keypoints |
|
|
195 |
std::vector<KeyPoint> keypoints1_best, keypoints2_best; |
|
|
196 |
std::vector<cv::DMatch> goodMatches; |
|
|
197 |
for( size_t i = 0; i < matches.size(); i++ ) |
|
|
198 |
{ |
|
|
199 |
keypoints1_best.push_back(keypoints1[matches[i].queryIdx]); |
|
|
200 |
keypoints2_best.push_back(keypoints2[matches[i].trainIdx]); |
|
|
201 |
goodMatches.push_back(cv::DMatch(static_cast<int>(i), static_cast<int>(i), 0)); |
|
|
202 |
} |
|
|
203 |
|
|
|
204 |
// Draw top matches and good ones only |
|
|
205 |
// Mat imMatches; |
|
|
206 |
drawMatches(im1, keypoints1_best, im2, keypoints2_best, goodMatches, imMatches); |
|
|
207 |
|
|
|
208 |
// Use homography to warp image |
|
|
209 |
warpPerspective(im1, im1Reg, h, im2.size()); |
|
|
210 |
warpPerspective(im1, im1Overlay, h, im2.size()); |
|
|
211 |
} |
|
|
212 |
|
|
|
213 |
// align images with FLANN algorithm |
|
|
214 |
void alignImagesFLANN(Mat &im1, Mat &im2, Mat &im1Reg, Mat &im1Overlay, Mat &imMatches, Mat &h, |
|
|
215 |
const bool invert_query, const bool invert_ref, |
|
|
216 |
const char* flipflop_query, const char* flipflop_ref, |
|
|
217 |
const char* rotate_query, const char* rotate_ref) |
|
|
218 |
{ |
|
|
219 |
|
|
|
220 |
// seed |
|
|
221 |
cv::setRNGSeed(0); |
|
|
222 |
|
|
|
223 |
// Convert images to grayscale |
|
|
224 |
Mat im1Gray, im2Gray; |
|
|
225 |
cvtColor(im1, im1Gray, cv::COLOR_BGR2GRAY); |
|
|
226 |
cvtColor(im2, im2Gray, cv::COLOR_BGR2GRAY); |
|
|
227 |
|
|
|
228 |
// Process images |
|
|
229 |
Mat im1Proc, im2Proc, im1NormalProc; |
|
|
230 |
im1Proc = preprocessImage(im1Gray, invert_query, flipflop_query, rotate_query); |
|
|
231 |
im1NormalProc = preprocessImage(im1, FALSE, flipflop_query, rotate_query); |
|
|
232 |
im2Proc = preprocessImage(im2Gray, invert_ref, flipflop_ref, rotate_ref); |
|
|
233 |
|
|
|
234 |
// Variables to store keypoints and descriptors |
|
|
235 |
std::vector<KeyPoint> keypoints1, keypoints2; |
|
|
236 |
Mat descriptors1, descriptors2; |
|
|
237 |
|
|
|
238 |
// Detect SIFT features |
|
|
239 |
Ptr<Feature2D> sift = cv::SIFT::create(); |
|
|
240 |
sift->detectAndCompute(im1Proc, Mat(), keypoints1, descriptors1); |
|
|
241 |
sift->detectAndCompute(im2Proc, Mat(), keypoints2, descriptors2); |
|
|
242 |
Rcout << "DONE: sift based key-points detection and descriptors computation" << endl; |
|
|
243 |
|
|
|
244 |
// Match features using FLANN matching |
|
|
245 |
std::vector<std::vector<DMatch>> matches; |
|
|
246 |
cv::FlannBasedMatcher custom_matcher = cv::FlannBasedMatcher(cv::makePtr<cv::flann::KDTreeIndexParams>(5), cv::makePtr<cv::flann::SearchParams>(50, 0, TRUE)); |
|
|
247 |
cv::Ptr<cv::FlannBasedMatcher> matcher = custom_matcher.create(); |
|
|
248 |
matcher->knnMatch(descriptors1, descriptors2, matches, 2); |
|
|
249 |
Rcout << "DONE: FLANN - Fast Library for Approximate Nearest Neighbors - descriptor matching" << endl; |
|
|
250 |
|
|
|
251 |
// Find good matches |
|
|
252 |
// goodMatches = get_good_matches(matches) |
|
|
253 |
std::vector<DMatch> good_matches; |
|
|
254 |
getGoodMatches(matches, good_matches); |
|
|
255 |
Rcout << "DONE: get good matches by distance thresholding" << endl; |
|
|
256 |
|
|
|
257 |
// Extract location of good matches |
|
|
258 |
std::vector<Point2f> points1, points2; |
|
|
259 |
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
|
260 |
{ |
|
|
261 |
points1.push_back(keypoints1[good_matches[i].queryIdx].pt); |
|
|
262 |
points2.push_back(keypoints2[good_matches[i].trainIdx].pt); |
|
|
263 |
} |
|
|
264 |
|
|
|
265 |
// Find homography |
|
|
266 |
cv::Mat mask; |
|
|
267 |
h = findHomography(points1, points2, RANSAC, 5, mask); |
|
|
268 |
Rcpp::Rcout << "DONE: calculated homography matrix" << endl; |
|
|
269 |
|
|
|
270 |
// Draw top matches and good ones only |
|
|
271 |
std::vector<cv::DMatch> top_matches; |
|
|
272 |
std::vector<cv::KeyPoint> keypoints1_best, keypoints2_best; |
|
|
273 |
for(size_t i = 0; i < good_matches.size(); i++ ) |
|
|
274 |
{ |
|
|
275 |
keypoints1_best.push_back(keypoints1[good_matches[i].queryIdx]); |
|
|
276 |
keypoints2_best.push_back(keypoints2[good_matches[i].trainIdx]); |
|
|
277 |
top_matches.push_back(cv::DMatch(static_cast<int>(i), static_cast<int>(i), 0)); |
|
|
278 |
} |
|
|
279 |
drawMatches(im1Proc, keypoints1_best, im2Proc, keypoints2_best, top_matches, imMatches); |
|
|
280 |
|
|
|
281 |
// Visualize matches, use for demonstration purposes |
|
|
282 |
// std::vector<cv::DMatch> top_matches_vis; |
|
|
283 |
// std::vector<cv::KeyPoint> keypoints1_best_vis, keypoints2_best_vis; |
|
|
284 |
// for(size_t i = 0; i < good_matches.size(); i++) |
|
|
285 |
// { |
|
|
286 |
// keypoints1_best_vis.push_back(keypoints1[good_matches[i].queryIdx]); |
|
|
287 |
// keypoints2_best_vis.push_back(keypoints2[good_matches[i].trainIdx]); |
|
|
288 |
// top_matches_vis.push_back(cv::DMatch(static_cast<int>(i), static_cast<int>(i), 0)); |
|
|
289 |
// } |
|
|
290 |
// Mat im1Proc_vis, im2Proc_vis, im1NormalProc_vis, imMatches_vis; |
|
|
291 |
// im1Proc_vis = preprocessImage(im1, invert_query, flipflop_query, rotate_query); |
|
|
292 |
// im2Proc_vis = preprocessImage(im2, invert_ref, flipflop_ref, rotate_ref); |
|
|
293 |
// drawMatches(im1Proc_vis, keypoints1_best, im2Proc_vis, keypoints2_best, top_matches, imMatches_vis); |
|
|
294 |
// cv::imwrite("matches.jpg", imMatches_vis); |
|
|
295 |
|
|
|
296 |
// check keypoints |
|
|
297 |
std::string is_faulty = check_transformation_metrics(keypoints1_best, keypoints2_best, im1, im2, h, mask); |
|
|
298 |
|
|
|
299 |
// Use homography to warp image |
|
|
300 |
Mat im1Warp, im1NormalWarp; |
|
|
301 |
warpPerspective(im1Proc, im1Warp, h, im2Proc.size()); |
|
|
302 |
warpPerspective(im1NormalProc, im1NormalWarp, h, im2Proc.size()); |
|
|
303 |
im1Reg = reversepreprocessImage(im1NormalWarp, flipflop_ref, rotate_ref); |
|
|
304 |
Rcout << "DONE: warped query image" << endl; |
|
|
305 |
|
|
|
306 |
// change color map |
|
|
307 |
Mat im1Combine; |
|
|
308 |
cv::addWeighted(im2Proc, 0.7, im1Warp, 0.3, 0, im1Combine); |
|
|
309 |
|
|
|
310 |
// return as rgb |
|
|
311 |
cvtColor(im1Combine, im1Overlay, cv::COLOR_GRAY2BGR); |
|
|
312 |
cvtColor(im2Proc, im2, cv::COLOR_GRAY2BGR); |
|
|
313 |
} |
|
|
314 |
|
|
|
315 |
// align images with FLANN algorithm |
|
|
316 |
void alignImagesFLANNTPS(Mat &im1, Mat &im2, Mat &im1Reg, Mat &im1Overlay, |
|
|
317 |
Mat &imMatches, Mat &h, Rcpp::List &keypoints, |
|
|
318 |
const bool invert_query, const bool invert_ref, |
|
|
319 |
const char* flipflop_query, const char* flipflop_ref, |
|
|
320 |
const char* rotate_query, const char* rotate_ref) |
|
|
321 |
{ |
|
|
322 |
|
|
|
323 |
// seed |
|
|
324 |
cv::setRNGSeed(0); |
|
|
325 |
|
|
|
326 |
// Convert images to grayscale |
|
|
327 |
Mat im1Gray, im2Gray; |
|
|
328 |
cvtColor(im1, im1Gray, cv::COLOR_BGR2GRAY); |
|
|
329 |
cvtColor(im2, im2Gray, cv::COLOR_BGR2GRAY); |
|
|
330 |
|
|
|
331 |
// Process images |
|
|
332 |
Mat im1Proc, im2Proc, im1NormalProc; |
|
|
333 |
im1Proc = preprocessImage(im1Gray, invert_query, flipflop_query, rotate_query); |
|
|
334 |
im1NormalProc = preprocessImage(im1, FALSE, flipflop_query, rotate_query); |
|
|
335 |
im2Proc = preprocessImage(im2Gray, invert_ref, flipflop_ref, rotate_ref); |
|
|
336 |
|
|
|
337 |
// Variables to store keypoints and descriptors |
|
|
338 |
std::vector<KeyPoint> keypoints1, keypoints2; |
|
|
339 |
Mat descriptors1, descriptors2; |
|
|
340 |
|
|
|
341 |
// Detect SIFT features |
|
|
342 |
Ptr<Feature2D> sift = cv::SIFT::create(); |
|
|
343 |
sift->detectAndCompute(im1Proc, Mat(), keypoints1, descriptors1); |
|
|
344 |
sift->detectAndCompute(im2Proc, Mat(), keypoints2, descriptors2); |
|
|
345 |
Rcout << "DONE: sift based key-points detection and descriptors computation" << endl; |
|
|
346 |
|
|
|
347 |
// Match features using FLANN matching |
|
|
348 |
std::vector<std::vector<DMatch>> matches; |
|
|
349 |
cv::FlannBasedMatcher custom_matcher = cv::FlannBasedMatcher(cv::makePtr<cv::flann::KDTreeIndexParams>(5), cv::makePtr<cv::flann::SearchParams>(50, 0, TRUE)); |
|
|
350 |
cv::Ptr<cv::FlannBasedMatcher> matcher = custom_matcher.create(); |
|
|
351 |
matcher->knnMatch(descriptors1, descriptors2, matches, 2); |
|
|
352 |
Rcout << "DONE: FLANN - Fast Library for Approximate Nearest Neighbors - descriptor matching" << endl; |
|
|
353 |
|
|
|
354 |
// Find good matches |
|
|
355 |
std::vector<DMatch> good_matches; |
|
|
356 |
getGoodMatches(matches, good_matches); |
|
|
357 |
Rcout << "DONE: get good matches by distance thresholding" << endl; |
|
|
358 |
|
|
|
359 |
// Extract location of good matches |
|
|
360 |
std::vector<Point2f> points1, points2; |
|
|
361 |
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
|
362 |
{ |
|
|
363 |
points1.push_back(keypoints1[good_matches[i].queryIdx].pt); |
|
|
364 |
points2.push_back(keypoints2[good_matches[i].trainIdx].pt); |
|
|
365 |
} |
|
|
366 |
|
|
|
367 |
// Find homography |
|
|
368 |
cv::Mat mask; |
|
|
369 |
h = findHomography(points1, points2, RANSAC, 5, mask); |
|
|
370 |
Rcout << "DONE: calculated homography matrix" << endl; |
|
|
371 |
|
|
|
372 |
// Use homography to warp image |
|
|
373 |
Mat im1Warp, im1NormalWarp; |
|
|
374 |
warpPerspective(im1Proc, im1Warp, h, im2Proc.size()); |
|
|
375 |
warpPerspective(im1NormalProc, im1NormalWarp, h, im2Proc.size()); |
|
|
376 |
Rcout << "DONE: warped query image" << endl; |
|
|
377 |
|
|
|
378 |
// Draw top matches and good ones only |
|
|
379 |
std::vector<cv::DMatch> top_matches; |
|
|
380 |
std::vector<cv::KeyPoint> keypoints1_best, keypoints2_best; |
|
|
381 |
for(size_t i = 0; i < good_matches.size(); i++ ) |
|
|
382 |
{ |
|
|
383 |
keypoints1_best.push_back(keypoints1[good_matches[i].queryIdx]); |
|
|
384 |
keypoints2_best.push_back(keypoints2[good_matches[i].trainIdx]); |
|
|
385 |
top_matches.push_back(cv::DMatch(static_cast<int>(i), static_cast<int>(i), 0)); |
|
|
386 |
} |
|
|
387 |
drawMatches(im1Proc, keypoints1_best, im2Proc, keypoints2_best, top_matches, imMatches); |
|
|
388 |
|
|
|
389 |
// check keypoints |
|
|
390 |
std::string is_faulty = check_transformation_metrics(keypoints1_best, keypoints2_best, im1, im2, h, mask); |
|
|
391 |
|
|
|
392 |
// continue with TPS or do FLANN only |
|
|
393 |
Mat im1Reg_Warp_nonrigid; |
|
|
394 |
Mat im1Reg_NormalWarp_nonrigid; |
|
|
395 |
if(is_faulty == "degenerate"){ |
|
|
396 |
|
|
|
397 |
// change color map |
|
|
398 |
Mat im1Combine; |
|
|
399 |
cv::addWeighted(im2Proc, 0.7, im1Warp, 0.3, 0, im1Combine); |
|
|
400 |
|
|
|
401 |
// Reverse process |
|
|
402 |
im1Reg = reversepreprocessImage(im1NormalWarp, flipflop_ref, rotate_ref); |
|
|
403 |
|
|
|
404 |
// return as rgb |
|
|
405 |
cvtColor(im1Combine, im1Overlay, cv::COLOR_GRAY2BGR); |
|
|
406 |
cvtColor(im2Proc, im2, cv::COLOR_GRAY2BGR); |
|
|
407 |
|
|
|
408 |
// if FLANN succeeds |
|
|
409 |
} else { |
|
|
410 |
|
|
|
411 |
// Filtered points (inliers) based on the mask |
|
|
412 |
std::vector<cv::Point2f> filtered_points1; |
|
|
413 |
std::vector<cv::Point2f> filtered_points2; |
|
|
414 |
for (int i = 0; i < mask.rows; i++) { |
|
|
415 |
if (mask.at<uchar>(i)) { |
|
|
416 |
filtered_points1.push_back(points1[i]); |
|
|
417 |
filtered_points2.push_back(points2[i]); |
|
|
418 |
} |
|
|
419 |
} |
|
|
420 |
removeCloseMatches(filtered_points1, filtered_points2); |
|
|
421 |
|
|
|
422 |
// transform query |
|
|
423 |
std::vector<cv::Point2f> filtered_points1_reg; |
|
|
424 |
cv::perspectiveTransform(filtered_points1, filtered_points1_reg, h); |
|
|
425 |
|
|
|
426 |
// get TPS matches |
|
|
427 |
std::vector<cv::DMatch> matches; |
|
|
428 |
for (unsigned int i = 0; i < filtered_points2.size(); i++) |
|
|
429 |
matches.push_back(cv::DMatch(i, i, 0)); |
|
|
430 |
|
|
|
431 |
// calculate TPS transformation |
|
|
432 |
Ptr<ThinPlateSplineShapeTransformer> tps = cv::createThinPlateSplineShapeTransformer(0); |
|
|
433 |
tps->estimateTransformation(filtered_points2, filtered_points1_reg, matches); |
|
|
434 |
|
|
|
435 |
// save keypoints |
|
|
436 |
keypoints[0] = point2fToNumericMatrix(filtered_points2); |
|
|
437 |
keypoints[1] = point2fToNumericMatrix(filtered_points1_reg); |
|
|
438 |
|
|
|
439 |
// determine extension limits for both images |
|
|
440 |
int y_max = max(im1Warp.rows, im2.rows); |
|
|
441 |
int x_max = max(im1Warp.cols, im2.cols); |
|
|
442 |
|
|
|
443 |
// extend images |
|
|
444 |
cv::copyMakeBorder(im1Warp, im1Warp, 0.0, (int) (y_max - im1Warp.rows), 0.0, (x_max - im1Warp.cols), cv::BORDER_CONSTANT, Scalar(0, 0, 0)); |
|
|
445 |
cv::copyMakeBorder(im1NormalWarp, im1NormalWarp, 0.0, (int) (y_max - im1NormalWarp.rows), 0.0, (x_max - im1NormalWarp.cols), cv::BORDER_CONSTANT, Scalar(0, 0, 0)); |
|
|
446 |
|
|
|
447 |
// transform image |
|
|
448 |
Mat im1Reg_Warp_nonrigid; |
|
|
449 |
Mat im1Reg_NormalWarp_nonrigid; |
|
|
450 |
tps->warpImage(im1Warp, im1Reg_Warp_nonrigid); |
|
|
451 |
tps->warpImage(im1NormalWarp, im1Reg_NormalWarp_nonrigid); |
|
|
452 |
|
|
|
453 |
// resize image |
|
|
454 |
cv::Mat im1Reg_NormalWarp_nonrigid_cropped = im1Reg_NormalWarp_nonrigid(cv::Range(0,im2Proc.size().height), cv::Range(0,im2Proc.size().width)); |
|
|
455 |
im1Reg_NormalWarp_nonrigid = im1Reg_NormalWarp_nonrigid_cropped.clone(); |
|
|
456 |
|
|
|
457 |
cv::Mat im1Reg_Warp_nonrigid_cropped = im1Reg_Warp_nonrigid(cv::Range(0,im2Proc.size().height), cv::Range(0,im2Proc.size().width)); |
|
|
458 |
im1Reg_Warp_nonrigid = im1Reg_Warp_nonrigid_cropped.clone(); |
|
|
459 |
|
|
|
460 |
// change color map |
|
|
461 |
Mat im1Combine; |
|
|
462 |
cv::addWeighted(im2Proc, 0.7, im1Reg_Warp_nonrigid, 0.3, 0, im1Combine); |
|
|
463 |
|
|
|
464 |
// Reverse process |
|
|
465 |
im1Reg = reversepreprocessImage(im1Reg_NormalWarp_nonrigid, flipflop_ref, rotate_ref); |
|
|
466 |
|
|
|
467 |
// return as rgb |
|
|
468 |
cvtColor(im1Combine, im1Overlay, cv::COLOR_GRAY2BGR); |
|
|
469 |
cvtColor(im2Proc, im2, cv::COLOR_GRAY2BGR); |
|
|
470 |
} |
|
|
471 |
} |
|
|
472 |
|
|
|
473 |
// [[Rcpp::export]] |
|
|
474 |
Rcpp::List automated_registeration_rawvector(Rcpp::RawVector ref_image, Rcpp::RawVector query_image, |
|
|
475 |
const int width1, const int height1, |
|
|
476 |
const int width2, const int height2, |
|
|
477 |
const float GOOD_MATCH_PERCENT, const int MAX_FEATURES, |
|
|
478 |
const bool invert_query, const bool invert_ref, |
|
|
479 |
Rcpp::String flipflop_query, Rcpp::String flipflop_ref, |
|
|
480 |
Rcpp::String rotate_query, Rcpp::String rotate_ref, |
|
|
481 |
Rcpp::String matcher, Rcpp::String method) |
|
|
482 |
{ |
|
|
483 |
// Return data |
|
|
484 |
Rcpp::List out(5); |
|
|
485 |
Rcpp::List out_trans(2); |
|
|
486 |
Rcpp::List keypoints(2); |
|
|
487 |
Mat imOverlay, imReg, h, imMatches; |
|
|
488 |
|
|
|
489 |
// Read reference image |
|
|
490 |
cv::Mat imReference = imageToMat(ref_image, width1, height1); |
|
|
491 |
|
|
|
492 |
// Read image to be aligned |
|
|
493 |
cv::Mat im = imageToMat(query_image, width2, height2); |
|
|
494 |
|
|
|
495 |
// Homography (with FLANN) + Non-rigid (TPS) |
|
|
496 |
if(strcmp(matcher.get_cstring(), "FLANN") == 0 && strcmp(method.get_cstring(), "Homography + Non-Rigid") == 0){ |
|
|
497 |
alignImagesFLANNTPS(im, imReference, imReg, imOverlay, imMatches, |
|
|
498 |
h, keypoints, |
|
|
499 |
invert_query, invert_ref, |
|
|
500 |
flipflop_query.get_cstring(), flipflop_ref.get_cstring(), |
|
|
501 |
rotate_query.get_cstring(), rotate_ref.get_cstring()); |
|
|
502 |
} |
|
|
503 |
|
|
|
504 |
// Homography (with FLANN) |
|
|
505 |
if(strcmp(matcher.get_cstring(), "FLANN") == 0 && strcmp(method.get_cstring(), "Homography") == 0){ |
|
|
506 |
alignImagesFLANN(im, imReference, imReg, imOverlay, imMatches, |
|
|
507 |
h, invert_query, invert_ref, |
|
|
508 |
flipflop_query.get_cstring(), flipflop_ref.get_cstring(), |
|
|
509 |
rotate_query.get_cstring(), rotate_ref.get_cstring()); |
|
|
510 |
} |
|
|
511 |
|
|
|
512 |
// Homography (with Brute-Force matching) |
|
|
513 |
if(strcmp(matcher.get_cstring(), "BRUTE-FORCE") == 0 && strcmp(method.get_cstring(), "Homography") == 0){ |
|
|
514 |
alignImagesBRUTE(im, imReference, imReg, imOverlay, imMatches, |
|
|
515 |
h, GOOD_MATCH_PERCENT, MAX_FEATURES); |
|
|
516 |
} |
|
|
517 |
|
|
|
518 |
// transformation matrix, can be either a matrix, set of keypoints or both |
|
|
519 |
out_trans[0] = matToNumericMatrix(h.clone()); |
|
|
520 |
out_trans[1] = keypoints; |
|
|
521 |
out[0] = out_trans; |
|
|
522 |
|
|
|
523 |
// destination image, registered image, keypoint matching image |
|
|
524 |
out[1] = matToImage(imReference.clone()); |
|
|
525 |
|
|
|
526 |
// registered image |
|
|
527 |
out[2] = matToImage(imReg.clone()); |
|
|
528 |
|
|
|
529 |
// keypoint matching image |
|
|
530 |
out[3] = matToImage(imMatches.clone()); |
|
|
531 |
|
|
|
532 |
// overlay image |
|
|
533 |
out[4] = matToImage(imOverlay.clone()); |
|
|
534 |
|
|
|
535 |
// return |
|
|
536 |
return out; |
|
|
537 |
} |