|
a |
|
b/docs/tutorials.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Tutorials" |
|
|
3 |
--- |
|
|
4 |
|
|
|
5 |
<style> |
|
|
6 |
.title{ |
|
|
7 |
display: none; |
|
|
8 |
} |
|
|
9 |
body { |
|
|
10 |
text-align: justify |
|
|
11 |
} |
|
|
12 |
table, th, td, tr{ |
|
|
13 |
empty-cells:hide; |
|
|
14 |
border-spacing: 25px; |
|
|
15 |
border-collapse: separate; |
|
|
16 |
} |
|
|
17 |
td{ |
|
|
18 |
filter:drop-shadow(0 0 10px rgba(0,0,0,0.3)); |
|
|
19 |
padding: 10px; |
|
|
20 |
background:white; |
|
|
21 |
text-align:center; |
|
|
22 |
width:33%; |
|
|
23 |
vertical-align: text-top; |
|
|
24 |
} |
|
|
25 |
td:hover, td:active{ |
|
|
26 |
filter:drop-shadow(0 0 10px rgba(0,0,0,0.3)); |
|
|
27 |
transform: scale(1.02); |
|
|
28 |
cursor: pointer; |
|
|
29 |
} |
|
|
30 |
.main-container { |
|
|
31 |
max-width: 1200px; |
|
|
32 |
margin-left: auto; |
|
|
33 |
margin-right: auto; |
|
|
34 |
} |
|
|
35 |
<!-- .main-container { --> |
|
|
36 |
<!-- margin-left: %5; --> |
|
|
37 |
<!-- margin-right: auto; --> |
|
|
38 |
<!-- } --> |
|
|
39 |
p.tutorial { |
|
|
40 |
text-decoration: none!important; |
|
|
41 |
font-size: 1.5em; |
|
|
42 |
color: #23803A; |
|
|
43 |
margin: 3% |
|
|
44 |
} |
|
|
45 |
</style> |
|
|
46 |
|
|
|
47 |
```{r setup, include=FALSE} |
|
|
48 |
# use rmarkdown::render_site(envir = knitr::knit_global()) |
|
|
49 |
knitr::opts_chunk$set(echo = TRUE) |
|
|
50 |
``` |
|
|
51 |
|
|
|
52 |
<br> |
|
|
53 |
<!-- <br> --> |
|
|
54 |
|
|
|
55 |
<!-- ## Spatial Data Analysis with VoltRon --> |
|
|
56 |
|
|
|
57 |
<br> |
|
|
58 |
|
|
|
59 |
## Spatially Aware Data Integration and Analysis |
|
|
60 |
|
|
|
61 |
**VoltRon** incorporates multiple **data integration utilities to achieve data transfer** across a diverse set of spatial data modalities and types. VoltRon utilizes OpenCV to align and synchronize spatial omic datasets using **computer vision and image registration**. Users can automaticaly or manually align a list of microscopy images (**H&E**, **DAPI** etc) using a **Shiny App** incorporated within our analysis workflow. Once aligned, feature data and metadata level information can be transfered across aligned tissue sections. |
|
|
62 |
|
|
|
63 |
In addition, VoltRon provides a number of spatially aware data analysis methods to detecting niches (i.e. **Niche Clustering**) within tissues. VoltRon allows estimating niches associated with each cell by incorporating the cell type level information around each cell or spot. We either detect cellular populations/compositions within a spatial neighborhood of a cell to create these niche level information (e.g. Xenium) or we estimate the cell type abundances of spots (e.g. Visium, DBIT-Seq) from a reference single cell data (Seurat, SingleCellExperiment etc.) with already annotated cell types. VoltRon can also use these spatial neighborhood to detect hot spots (i.e. **Hot Spot Analysis**) of features, cell types and even molecular densities. |
|
|
64 |
|
|
|
65 |
<div> |
|
|
66 |
<table> |
|
|
67 |
<tbody> |
|
|
68 |
<tr> |
|
|
69 |
<td onclick="location.href='registration.html';"> |
|
|
70 |
<p class ="tutorial"> Spatial Data Alignment </p> |
|
|
71 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration.png" class="center"></div> |
|
|
72 |
<p style = "margin-top: 3%"> Automated and manual alignment of spatial data assays</p> |
|
|
73 |
</td> |
|
|
74 |
<td onclick="location.href='multiomic.html';"> |
|
|
75 |
<p class ="tutorial"> Multi-omic Integration </p> |
|
|
76 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/multiomic.png" class="center"></div> |
|
|
77 |
<p style = "margin-top: 8%"> Integrating data modalities within or across tissue sections </p> |
|
|
78 |
</td> |
|
|
79 |
<td onclick="location.href='nicheclustering.html';"> |
|
|
80 |
<p class ="tutorial"> Niche Clustering </p> |
|
|
81 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/deconvolution.png" class="center"></div> |
|
|
82 |
<p style = "margin-top: 10%"> Clustering based on ROI/spot deconvolution and Spatial Neighborhood </p> |
|
|
83 |
</td> |
|
|
84 |
</tr> |
|
|
85 |
</tbody> |
|
|
86 |
</table> |
|
|
87 |
</div> |
|
|
88 |
|
|
|
89 |
<br> |
|
|
90 |
<br> |
|
|
91 |
|
|
|
92 |
## Additional Downstream Analysis |
|
|
93 |
|
|
|
94 |
**VoltRon** is also capable of end-to-end analysis of diverse set of spatial data types (or spatial entities)such as **ROIs** (regions of interest), **spots**, **single cells**, **molecules** and even **images**. Users can set any data type as default at any time where VoltRon provides minimal set of functions to analyze, process and visualize each of these modalities. |
|
|
95 |
|
|
|
96 |
<table> |
|
|
97 |
<tbody> |
|
|
98 |
<tr> |
|
|
99 |
<td onclick="location.href='roianalysis.html';"> |
|
|
100 |
<p class ="tutorial"> Region of Interests (ROIs) </p> |
|
|
101 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/GeoMx.png" class="center"></div> |
|
|
102 |
<p style = "margin-top: 7%"> Quality control, analysis and visualization of ROI segments </p> |
|
|
103 |
</td> |
|
|
104 |
<td onclick="location.href='spotanalysis.html';"> |
|
|
105 |
<p class ="tutorial"> Cells/Spots </p> |
|
|
106 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/spotanalysis.png" class="center"></div> |
|
|
107 |
<p style = "margin-top: 3%"> Quality control, analysis and visualization of Cell/Spot datasets </p> |
|
|
108 |
</td> |
|
|
109 |
<td onclick="location.href='moleculeanalysis.html';"> |
|
|
110 |
<p class ="tutorial"> Molecules </p> |
|
|
111 |
<br> |
|
|
112 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_visualize.png" class="center"></div> |
|
|
113 |
<p style = "margin-top: 10%"> Analysis and visualization of Molecule datasets <br> <strong> (Under Development) </strong> </p> |
|
|
114 |
</td> |
|
|
115 |
</tr> |
|
|
116 |
<tr> |
|
|
117 |
<td onclick="location.href='pixelanalysis.html';"> |
|
|
118 |
<p class ="tutorial"> Pixels (Image Only) </p> |
|
|
119 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/tissue_lowres_image_grid.png" class="center"></div> |
|
|
120 |
<p style = "margin-top: 3%"> Analysis and visualization of Image datasets <br> <strong> (Under Development) </strong> </p> |
|
|
121 |
</td> |
|
|
122 |
<td> |
|
|
123 |
</td> |
|
|
124 |
<td> |
|
|
125 |
</td> |
|
|
126 |
</tr> |
|
|
127 |
</tbody> |
|
|
128 |
</table> |
|
|
129 |
|
|
|
130 |
<br> |
|
|
131 |
<br> |
|
|
132 |
|
|
|
133 |
## Other Utilities |
|
|
134 |
|
|
|
135 |
Here, we provide a group of tutorials to use additional features of the VoltRon objects as well as further information on how to use VoltRon. We describe a collection of features that VoltRon package utilizes such as **interactive annotation/visualization** and importing spatially aware data from **diverse spatial omic technologies**. VoltRon is able to convert its objects to a diverse set of objects/datatypes commonly incorporated spatial data analysis (**Seurat**, **SpatialExperiment**, **Giotto**, **AnnData** etc.). Large VoltRon objects can be **saved ondisk** and efficiently analyzed without straining memory. |
|
|
136 |
|
|
|
137 |
<table> |
|
|
138 |
<tbody> |
|
|
139 |
<tr> |
|
|
140 |
<td onclick="location.href='interactive.html';"> |
|
|
141 |
<p class ="tutorial"> Interactive Utilities </p> |
|
|
142 |
<br> |
|
|
143 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/interactiveannotation.png" class="center"></div> |
|
|
144 |
<p style = "margin-top: 8%"> Interactive annotation and visualization </p> |
|
|
145 |
</td> |
|
|
146 |
<td onclick="location.href='voltronobjects.html';"> |
|
|
147 |
<p class ="tutorial"> Working with VoltRon Objects </p> |
|
|
148 |
<br> |
|
|
149 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/voltronobjects.png" class="center"></div> |
|
|
150 |
<br> |
|
|
151 |
<br> |
|
|
152 |
<p style = "margin-top: 6%"> Manipulating and configuring VoltRon objects </p> |
|
|
153 |
</td> |
|
|
154 |
<td onclick="location.href='importingdata.html';"> |
|
|
155 |
<p class ="tutorial"> Importing Spatial Data </p> |
|
|
156 |
<div style = "margin: 10%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/technologies.png" class="center"></div> |
|
|
157 |
<p style = "margin-top: -3%"> Importing readouts of spatial technologies </p> |
|
|
158 |
</td> |
|
|
159 |
</tr> |
|
|
160 |
<tr> |
|
|
161 |
<td onclick="location.href='conversion.html';"> |
|
|
162 |
<p class ="tutorial"> Converting VoltRon Objects </p> |
|
|
163 |
<br> |
|
|
164 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/conversion.png" class="center"></div> |
|
|
165 |
<p style = "margin-top: 9%"> Converting VoltRon objects into Seurat, SpatialExperiment and Squidpy (anndata) etc. </p> |
|
|
166 |
</td> |
|
|
167 |
<td onclick="location.href='ondisk.html';"> |
|
|
168 |
<p class ="tutorial"> OnDisk Analysis Utilities </p> |
|
|
169 |
<div style = "margin: 5%"><img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/ondisk.png" class="center"></div> |
|
|
170 |
<p style = "margin: 5%"> Efficient access to large VoltRon objects </p> |
|
|
171 |
</td> |
|
|
172 |
</tr> |
|
|
173 |
</tbody> |
|
|
174 |
</table> |
|
|
175 |
|
|
|
176 |
<br> |