|
a |
|
b/docs/roianalysis.html |
|
|
1 |
<!DOCTYPE html> |
|
|
2 |
|
|
|
3 |
<html> |
|
|
4 |
|
|
|
5 |
<head> |
|
|
6 |
|
|
|
7 |
<meta charset="utf-8" /> |
|
|
8 |
<meta name="generator" content="pandoc" /> |
|
|
9 |
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
<title>ROI Analysis</title> |
|
|
15 |
|
|
|
16 |
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script> |
|
|
17 |
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script> |
|
|
18 |
<meta name="viewport" content="width=device-width, initial-scale=1" /> |
|
|
19 |
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" /> |
|
|
20 |
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script> |
|
|
21 |
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script> |
|
|
22 |
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script> |
|
|
23 |
<style>h1 {font-size: 34px;} |
|
|
24 |
h1.title {font-size: 38px;} |
|
|
25 |
h2 {font-size: 30px;} |
|
|
26 |
h3 {font-size: 24px;} |
|
|
27 |
h4 {font-size: 18px;} |
|
|
28 |
h5 {font-size: 16px;} |
|
|
29 |
h6 {font-size: 12px;} |
|
|
30 |
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);} |
|
|
31 |
pre:not([class]) { background-color: white }</style> |
|
|
32 |
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script> |
|
|
33 |
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" /> |
|
|
34 |
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script> |
|
|
35 |
<script src="site_libs/navigation-1.1/tabsets.js"></script> |
|
|
36 |
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" /> |
|
|
37 |
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script> |
|
|
38 |
<link href="site_libs/font-awesome-6.5.2/css/all.min.css" rel="stylesheet" /> |
|
|
39 |
<link href="site_libs/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet" /> |
|
|
40 |
|
|
|
41 |
<style type="text/css"> |
|
|
42 |
code{white-space: pre-wrap;} |
|
|
43 |
span.smallcaps{font-variant: small-caps;} |
|
|
44 |
span.underline{text-decoration: underline;} |
|
|
45 |
div.column{display: inline-block; vertical-align: top; width: 50%;} |
|
|
46 |
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} |
|
|
47 |
ul.task-list{list-style: none;} |
|
|
48 |
</style> |
|
|
49 |
|
|
|
50 |
<style type="text/css">code{white-space: pre;}</style> |
|
|
51 |
<script type="text/javascript"> |
|
|
52 |
if (window.hljs) { |
|
|
53 |
hljs.configure({languages: []}); |
|
|
54 |
hljs.initHighlightingOnLoad(); |
|
|
55 |
if (document.readyState && document.readyState === "complete") { |
|
|
56 |
window.setTimeout(function() { hljs.initHighlighting(); }, 0); |
|
|
57 |
} |
|
|
58 |
} |
|
|
59 |
</script> |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
<style type = "text/css"> |
|
|
70 |
.main-container { |
|
|
71 |
max-width: 940px; |
|
|
72 |
margin-left: auto; |
|
|
73 |
margin-right: auto; |
|
|
74 |
} |
|
|
75 |
img { |
|
|
76 |
max-width:100%; |
|
|
77 |
} |
|
|
78 |
.tabbed-pane { |
|
|
79 |
padding-top: 12px; |
|
|
80 |
} |
|
|
81 |
.html-widget { |
|
|
82 |
margin-bottom: 20px; |
|
|
83 |
} |
|
|
84 |
button.code-folding-btn:focus { |
|
|
85 |
outline: none; |
|
|
86 |
} |
|
|
87 |
summary { |
|
|
88 |
display: list-item; |
|
|
89 |
} |
|
|
90 |
details > summary > p:only-child { |
|
|
91 |
display: inline; |
|
|
92 |
} |
|
|
93 |
pre code { |
|
|
94 |
padding: 0; |
|
|
95 |
} |
|
|
96 |
</style> |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
<style type="text/css"> |
|
|
100 |
.dropdown-submenu { |
|
|
101 |
position: relative; |
|
|
102 |
} |
|
|
103 |
.dropdown-submenu>.dropdown-menu { |
|
|
104 |
top: 0; |
|
|
105 |
left: 100%; |
|
|
106 |
margin-top: -6px; |
|
|
107 |
margin-left: -1px; |
|
|
108 |
border-radius: 0 6px 6px 6px; |
|
|
109 |
} |
|
|
110 |
.dropdown-submenu:hover>.dropdown-menu { |
|
|
111 |
display: block; |
|
|
112 |
} |
|
|
113 |
.dropdown-submenu>a:after { |
|
|
114 |
display: block; |
|
|
115 |
content: " "; |
|
|
116 |
float: right; |
|
|
117 |
width: 0; |
|
|
118 |
height: 0; |
|
|
119 |
border-color: transparent; |
|
|
120 |
border-style: solid; |
|
|
121 |
border-width: 5px 0 5px 5px; |
|
|
122 |
border-left-color: #cccccc; |
|
|
123 |
margin-top: 5px; |
|
|
124 |
margin-right: -10px; |
|
|
125 |
} |
|
|
126 |
.dropdown-submenu:hover>a:after { |
|
|
127 |
border-left-color: #adb5bd; |
|
|
128 |
} |
|
|
129 |
.dropdown-submenu.pull-left { |
|
|
130 |
float: none; |
|
|
131 |
} |
|
|
132 |
.dropdown-submenu.pull-left>.dropdown-menu { |
|
|
133 |
left: -100%; |
|
|
134 |
margin-left: 10px; |
|
|
135 |
border-radius: 6px 0 6px 6px; |
|
|
136 |
} |
|
|
137 |
</style> |
|
|
138 |
|
|
|
139 |
<script type="text/javascript"> |
|
|
140 |
// manage active state of menu based on current page |
|
|
141 |
$(document).ready(function () { |
|
|
142 |
// active menu anchor |
|
|
143 |
href = window.location.pathname |
|
|
144 |
href = href.substr(href.lastIndexOf('/') + 1) |
|
|
145 |
if (href === "") |
|
|
146 |
href = "index.html"; |
|
|
147 |
var menuAnchor = $('a[href="' + href + '"]'); |
|
|
148 |
|
|
|
149 |
// mark the anchor link active (and if it's in a dropdown, also mark that active) |
|
|
150 |
var dropdown = menuAnchor.closest('li.dropdown'); |
|
|
151 |
if (window.bootstrap) { // Bootstrap 4+ |
|
|
152 |
menuAnchor.addClass('active'); |
|
|
153 |
dropdown.find('> .dropdown-toggle').addClass('active'); |
|
|
154 |
} else { // Bootstrap 3 |
|
|
155 |
menuAnchor.parent().addClass('active'); |
|
|
156 |
dropdown.addClass('active'); |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
// Navbar adjustments |
|
|
160 |
var navHeight = $(".navbar").first().height() + 15; |
|
|
161 |
var style = document.createElement('style'); |
|
|
162 |
var pt = "padding-top: " + navHeight + "px; "; |
|
|
163 |
var mt = "margin-top: -" + navHeight + "px; "; |
|
|
164 |
var css = ""; |
|
|
165 |
// offset scroll position for anchor links (for fixed navbar) |
|
|
166 |
for (var i = 1; i <= 6; i++) { |
|
|
167 |
css += ".section h" + i + "{ " + pt + mt + "}\n"; |
|
|
168 |
} |
|
|
169 |
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css; |
|
|
170 |
document.head.appendChild(style); |
|
|
171 |
}); |
|
|
172 |
</script> |
|
|
173 |
|
|
|
174 |
<!-- tabsets --> |
|
|
175 |
|
|
|
176 |
<style type="text/css"> |
|
|
177 |
.tabset-dropdown > .nav-tabs { |
|
|
178 |
display: inline-table; |
|
|
179 |
max-height: 500px; |
|
|
180 |
min-height: 44px; |
|
|
181 |
overflow-y: auto; |
|
|
182 |
border: 1px solid #ddd; |
|
|
183 |
border-radius: 4px; |
|
|
184 |
} |
|
|
185 |
|
|
|
186 |
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before { |
|
|
187 |
content: "\e259"; |
|
|
188 |
font-family: 'Glyphicons Halflings'; |
|
|
189 |
display: inline-block; |
|
|
190 |
padding: 10px; |
|
|
191 |
border-right: 1px solid #ddd; |
|
|
192 |
} |
|
|
193 |
|
|
|
194 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before { |
|
|
195 |
content: "\e258"; |
|
|
196 |
font-family: 'Glyphicons Halflings'; |
|
|
197 |
border: none; |
|
|
198 |
} |
|
|
199 |
|
|
|
200 |
.tabset-dropdown > .nav-tabs > li.active { |
|
|
201 |
display: block; |
|
|
202 |
} |
|
|
203 |
|
|
|
204 |
.tabset-dropdown > .nav-tabs > li > a, |
|
|
205 |
.tabset-dropdown > .nav-tabs > li > a:focus, |
|
|
206 |
.tabset-dropdown > .nav-tabs > li > a:hover { |
|
|
207 |
border: none; |
|
|
208 |
display: inline-block; |
|
|
209 |
border-radius: 4px; |
|
|
210 |
background-color: transparent; |
|
|
211 |
} |
|
|
212 |
|
|
|
213 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li { |
|
|
214 |
display: block; |
|
|
215 |
float: none; |
|
|
216 |
} |
|
|
217 |
|
|
|
218 |
.tabset-dropdown > .nav-tabs > li { |
|
|
219 |
display: none; |
|
|
220 |
} |
|
|
221 |
</style> |
|
|
222 |
|
|
|
223 |
<!-- code folding --> |
|
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
|
227 |
<style type="text/css"> |
|
|
228 |
|
|
|
229 |
#TOC { |
|
|
230 |
margin: 25px 0px 20px 0px; |
|
|
231 |
} |
|
|
232 |
@media (max-width: 768px) { |
|
|
233 |
#TOC { |
|
|
234 |
position: relative; |
|
|
235 |
width: 100%; |
|
|
236 |
} |
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
@media print { |
|
|
240 |
.toc-content { |
|
|
241 |
/* see https://github.com/w3c/csswg-drafts/issues/4434 */ |
|
|
242 |
float: right; |
|
|
243 |
} |
|
|
244 |
} |
|
|
245 |
|
|
|
246 |
.toc-content { |
|
|
247 |
padding-left: 30px; |
|
|
248 |
padding-right: 40px; |
|
|
249 |
} |
|
|
250 |
|
|
|
251 |
div.main-container { |
|
|
252 |
max-width: 1200px; |
|
|
253 |
} |
|
|
254 |
|
|
|
255 |
div.tocify { |
|
|
256 |
width: 20%; |
|
|
257 |
max-width: 260px; |
|
|
258 |
max-height: 85%; |
|
|
259 |
} |
|
|
260 |
|
|
|
261 |
@media (min-width: 768px) and (max-width: 991px) { |
|
|
262 |
div.tocify { |
|
|
263 |
width: 25%; |
|
|
264 |
} |
|
|
265 |
} |
|
|
266 |
|
|
|
267 |
@media (max-width: 767px) { |
|
|
268 |
div.tocify { |
|
|
269 |
width: 100%; |
|
|
270 |
max-width: none; |
|
|
271 |
} |
|
|
272 |
} |
|
|
273 |
|
|
|
274 |
.tocify ul, .tocify li { |
|
|
275 |
line-height: 20px; |
|
|
276 |
} |
|
|
277 |
|
|
|
278 |
.tocify-subheader .tocify-item { |
|
|
279 |
font-size: 0.90em; |
|
|
280 |
} |
|
|
281 |
|
|
|
282 |
.tocify .list-group-item { |
|
|
283 |
border-radius: 0px; |
|
|
284 |
} |
|
|
285 |
|
|
|
286 |
.tocify-subheader { |
|
|
287 |
display: inline; |
|
|
288 |
} |
|
|
289 |
.tocify-subheader .tocify-item { |
|
|
290 |
font-size: 0.95em; |
|
|
291 |
} |
|
|
292 |
|
|
|
293 |
</style> |
|
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
</head> |
|
|
298 |
|
|
|
299 |
<body> |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
<div class="container-fluid main-container"> |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
<!-- setup 3col/9col grid for toc_float and main content --> |
|
|
306 |
<div class="row"> |
|
|
307 |
<div class="col-xs-12 col-sm-4 col-md-3"> |
|
|
308 |
<div id="TOC" class="tocify"> |
|
|
309 |
</div> |
|
|
310 |
</div> |
|
|
311 |
|
|
|
312 |
<div class="toc-content col-xs-12 col-sm-8 col-md-9"> |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
|
317 |
<div class="navbar navbar-default navbar-fixed-top" role="navigation"> |
|
|
318 |
<div class="container"> |
|
|
319 |
<div class="navbar-header"> |
|
|
320 |
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar"> |
|
|
321 |
<span class="icon-bar"></span> |
|
|
322 |
<span class="icon-bar"></span> |
|
|
323 |
<span class="icon-bar"></span> |
|
|
324 |
</button> |
|
|
325 |
<a class="navbar-brand" href="index.html">VoltRon</a> |
|
|
326 |
</div> |
|
|
327 |
<div id="navbar" class="navbar-collapse collapse"> |
|
|
328 |
<ul class="nav navbar-nav"> |
|
|
329 |
<li> |
|
|
330 |
<a href="tutorials.html">Explore</a> |
|
|
331 |
</li> |
|
|
332 |
<li class="dropdown"> |
|
|
333 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
334 |
Vignette |
|
|
335 |
|
|
|
336 |
<span class="caret"></span> |
|
|
337 |
</a> |
|
|
338 |
<ul class="dropdown-menu" role="menu"> |
|
|
339 |
<li class="dropdown-submenu"> |
|
|
340 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Spatial Data Integration</a> |
|
|
341 |
<ul class="dropdown-menu" role="menu"> |
|
|
342 |
<li> |
|
|
343 |
<a href="registration.html">Spatial Data Alignment</a> |
|
|
344 |
</li> |
|
|
345 |
<li> |
|
|
346 |
<a href="multiomic.html">Multi-omic Integration</a> |
|
|
347 |
</li> |
|
|
348 |
<li> |
|
|
349 |
<a href="nicheclustering.html">Niche Clustering</a> |
|
|
350 |
</li> |
|
|
351 |
</ul> |
|
|
352 |
</li> |
|
|
353 |
<li class="dropdown-submenu"> |
|
|
354 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Downstream Analysis</a> |
|
|
355 |
<ul class="dropdown-menu" role="menu"> |
|
|
356 |
<li> |
|
|
357 |
<a href="roianalysis.html">ROI Analysis</a> |
|
|
358 |
</li> |
|
|
359 |
<li> |
|
|
360 |
<a href="spotanalysis.html">Cell/Spot Analysis</a> |
|
|
361 |
</li> |
|
|
362 |
<li> |
|
|
363 |
<a href="moleculeanalysis.html">Molecule Analysis</a> |
|
|
364 |
</li> |
|
|
365 |
<li> |
|
|
366 |
<a href="pixelanalysis.html">Pixels (Image Only) Analysis</a> |
|
|
367 |
</li> |
|
|
368 |
</ul> |
|
|
369 |
</li> |
|
|
370 |
<li class="dropdown-submenu"> |
|
|
371 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Utilities</a> |
|
|
372 |
<ul class="dropdown-menu" role="menu"> |
|
|
373 |
<li> |
|
|
374 |
<a href="interactive.html">Interactive Utilities</a> |
|
|
375 |
</li> |
|
|
376 |
<li> |
|
|
377 |
<a href="importingdata.html">Importing Spatial Data</a> |
|
|
378 |
</li> |
|
|
379 |
<li> |
|
|
380 |
<a href="voltronobjects.html">Working with VoltRon Objects</a> |
|
|
381 |
</li> |
|
|
382 |
<li> |
|
|
383 |
<a href="conversion.html">Converting VoltRon Objects</a> |
|
|
384 |
</li> |
|
|
385 |
<li> |
|
|
386 |
<a href="ondisk.html">OnDisk-based Analysis Utilities</a> |
|
|
387 |
</li> |
|
|
388 |
</ul> |
|
|
389 |
</li> |
|
|
390 |
</ul> |
|
|
391 |
</li> |
|
|
392 |
</ul> |
|
|
393 |
<ul class="nav navbar-nav navbar-right"> |
|
|
394 |
<li class="dropdown"> |
|
|
395 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
396 |
<span class="fa fa-envelope-o"></span> |
|
|
397 |
|
|
|
398 |
Contact |
|
|
399 |
|
|
|
400 |
<span class="caret"></span> |
|
|
401 |
</a> |
|
|
402 |
<ul class="dropdown-menu" role="menu"> |
|
|
403 |
<li> |
|
|
404 |
<a href="https://bioinformatics.mdc-berlin.de">Altuna Lab/BIMSB Bioinfo</a> |
|
|
405 |
</li> |
|
|
406 |
<li> |
|
|
407 |
<a href="https://www.mdc-berlin.de/landthaler">Landthaler Lab/BIMSB</a> |
|
|
408 |
</li> |
|
|
409 |
</ul> |
|
|
410 |
</li> |
|
|
411 |
<li class="dropdown"> |
|
|
412 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
413 |
<span class="fa fa-github"></span> |
|
|
414 |
|
|
|
415 |
GitHub |
|
|
416 |
|
|
|
417 |
<span class="caret"></span> |
|
|
418 |
</a> |
|
|
419 |
<ul class="dropdown-menu" role="menu"> |
|
|
420 |
<li> |
|
|
421 |
<a href="https://github.com/BIMSBbioinfo/VoltRon">VoltRon</a> |
|
|
422 |
</li> |
|
|
423 |
<li> |
|
|
424 |
<a href="https://github.com/BIMSBbioinfo">BIMSB Bioinfo</a> |
|
|
425 |
</li> |
|
|
426 |
</ul> |
|
|
427 |
</li> |
|
|
428 |
</ul> |
|
|
429 |
</div><!--/.nav-collapse --> |
|
|
430 |
</div><!--/.container --> |
|
|
431 |
</div><!--/.navbar --> |
|
|
432 |
|
|
|
433 |
<div id="header"> |
|
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
|
437 |
<h1 class="title toc-ignore">ROI Analysis</h1> |
|
|
438 |
|
|
|
439 |
</div> |
|
|
440 |
|
|
|
441 |
|
|
|
442 |
<style> |
|
|
443 |
.title{ |
|
|
444 |
display: none; |
|
|
445 |
} |
|
|
446 |
body { |
|
|
447 |
text-align: justify |
|
|
448 |
} |
|
|
449 |
.center { |
|
|
450 |
display: block; |
|
|
451 |
margin-left: auto; |
|
|
452 |
margin-right: auto; |
|
|
453 |
} |
|
|
454 |
table, th, td { |
|
|
455 |
border-collapse: collapse; |
|
|
456 |
align-self: center; |
|
|
457 |
padding-right: 10px; |
|
|
458 |
padding-left: 10px; |
|
|
459 |
} |
|
|
460 |
</style> |
|
|
461 |
<style type="text/css"> |
|
|
462 |
.watch-out { |
|
|
463 |
color: black; |
|
|
464 |
} |
|
|
465 |
</style> |
|
|
466 |
<p><br></p> |
|
|
467 |
<div id="roi-analysis" class="section level1"> |
|
|
468 |
<h1>ROI Analysis</h1> |
|
|
469 |
<p>VoltRon is capable of analyzing readouts from distinct spatial |
|
|
470 |
technologies including <strong>segmentation (ROI)-based transciptomics |
|
|
471 |
assays</strong> that capture large polygonic regions on tissue sections. |
|
|
472 |
VoltRon recognizes such readouts including ones from commercially |
|
|
473 |
available tools and allows users to implement a workflow similar to ones |
|
|
474 |
conducted on bulk RNA-Seq datasets. In this tutorial, we will analyze |
|
|
475 |
morphological images and gene expression profiles provided by the |
|
|
476 |
readouts of the <a |
|
|
477 |
href="https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/">Nanostring’s |
|
|
478 |
GeoMx Digital Spatial Profiler</a> platform, a high-plex spatial |
|
|
479 |
profiling technology which produces segmentation-based protein and RNA |
|
|
480 |
assays.</p> |
|
|
481 |
<p>In this use case, <strong>eight tissue micro array (TMA) tissue |
|
|
482 |
sections</strong> were fitted into the scan area of the slide loaded on |
|
|
483 |
the GeoMx DSP instrument. These sections were cut from <strong>control |
|
|
484 |
and COVID-19 lung tissues</strong> of donors categorized based on |
|
|
485 |
disease durations (acute and prolonged). See <a |
|
|
486 |
href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190732">GSE190732</a> |
|
|
487 |
for more information.</p> |
|
|
488 |
<p>You can download these tutorial files from here:</p> |
|
|
489 |
<table> |
|
|
490 |
<tr> |
|
|
491 |
<th> |
|
|
492 |
File |
|
|
493 |
</th> |
|
|
494 |
<th> |
|
|
495 |
Link |
|
|
496 |
</th> |
|
|
497 |
</tr> |
|
|
498 |
<tr> |
|
|
499 |
<td> |
|
|
500 |
Counts |
|
|
501 |
</td> |
|
|
502 |
<td> |
|
|
503 |
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/DCC-20230427.zip">DDC |
|
|
504 |
files</a> |
|
|
505 |
</td> |
|
|
506 |
</tr> |
|
|
507 |
<tr> |
|
|
508 |
<td> |
|
|
509 |
GeoMx Human Whole Transcriptome Atlas |
|
|
510 |
</td> |
|
|
511 |
<td> |
|
|
512 |
<a href="https://nanostring.com/wp-content/uploads/Hs_R_NGS_WTA_v1.0.pkc_.zip">Human |
|
|
513 |
RNA WTA for NGS</a> |
|
|
514 |
</td> |
|
|
515 |
</tr> |
|
|
516 |
<tr> |
|
|
517 |
<td> |
|
|
518 |
Segment Summary |
|
|
519 |
</td> |
|
|
520 |
<td> |
|
|
521 |
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/segmentSummary.csv"> |
|
|
522 |
ROI Metadata file </a> |
|
|
523 |
</td> |
|
|
524 |
</tr> |
|
|
525 |
<tr> |
|
|
526 |
<td> |
|
|
527 |
Morphology Image |
|
|
528 |
</td> |
|
|
529 |
<td> |
|
|
530 |
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.tif"> |
|
|
531 |
Image file </a> |
|
|
532 |
</td> |
|
|
533 |
</tr> |
|
|
534 |
<tr> |
|
|
535 |
<td> |
|
|
536 |
OME.TIFF Image |
|
|
537 |
</td> |
|
|
538 |
<td> |
|
|
539 |
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.ome.tiff"> |
|
|
540 |
OME.TIFF file </a> |
|
|
541 |
</td> |
|
|
542 |
</tr> |
|
|
543 |
<tr> |
|
|
544 |
<td> |
|
|
545 |
OME.TIFF Image (XML) |
|
|
546 |
</td> |
|
|
547 |
<td> |
|
|
548 |
<a href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/Lu1A1B5umtrueexp.ome.tiff.xml" download target="_blank"> |
|
|
549 |
OME.TIFF (XML) file </a> |
|
|
550 |
</td> |
|
|
551 |
</tr> |
|
|
552 |
</table> |
|
|
553 |
<p> |
|
|
554 |
</p> |
|
|
555 |
<p>We now import the GeoMx data, and start analyzing 87 user selected |
|
|
556 |
segments (i.e. region of interests, <strong>ROI</strong>) to check |
|
|
557 |
spatial localization of signals. The <strong>importGeoMx</strong> |
|
|
558 |
function requires:</p> |
|
|
559 |
<ul> |
|
|
560 |
<li>The path to the Digital Count Conversion file, |
|
|
561 |
<strong>dcc.path</strong>, and Probe Kit Configuration file, |
|
|
562 |
<strong>pkc.file</strong>, which are both provided as the output of the |
|
|
563 |
<a |
|
|
564 |
href="https://emea.illumina.com/products/by-type/informatics-products/basespace-sequence-hub/apps/nanostring-geomxr-ngs-pipeline.html">GeoMx |
|
|
565 |
NGS Pipeline</a>.</li> |
|
|
566 |
<li>The path the to the metadata file, <strong>summarySegment</strong>, |
|
|
567 |
and the specific excel sheet that the metadata is found, |
|
|
568 |
<strong>summarySegmentSheetName</strong>, the path to the main |
|
|
569 |
morphology <strong>image</strong> and the original <strong>ome.tiff |
|
|
570 |
(xml)</strong> file, all of which are provided and imported from the DSP |
|
|
571 |
Control Center. Please see <a |
|
|
572 |
href="https://nanostring.com/support-documents/geomx-dsp-data-analysis-user-manual/">GeoMx |
|
|
573 |
DSP Data Analysis User Manual</a> for more information.</li> |
|
|
574 |
</ul> |
|
|
575 |
<pre class="r watch-out"><code>library(VoltRon) |
|
|
576 |
library(xlsx) |
|
|
577 |
GeoMxR1 <- importGeoMx(dcc.path = "DCC-20230427/", |
|
|
578 |
pkc.file = "Hs_R_NGS_WTA_v1.0.pkc", |
|
|
579 |
summarySegment = "segmentSummary.csv", |
|
|
580 |
image = "Lu1A1B5umtrueexp.tif", |
|
|
581 |
ome.tiff = "Lu1A1B5umtrueexp.ome.tiff.xml", |
|
|
582 |
sample_name = "GeoMxR1")</code></pre> |
|
|
583 |
<p>We can import the GeoMx ROI segments from the |
|
|
584 |
<strong>Lu1A1B5umtrueexp.ome.tiff</strong> image file directly by |
|
|
585 |
replacing the .xml file with the .ome.tiff file in the |
|
|
586 |
<strong>ome.tiff</strong> argument. Note that you need to call the |
|
|
587 |
<strong>RBioFormats</strong> library. If you are getting a <strong>java |
|
|
588 |
error</strong> when running importGeoMx, try increasing the maximum heap |
|
|
589 |
size by supplying the <strong>-Xmx</strong> parameter. Run the code |
|
|
590 |
below before rerunning <strong>importGeoMx</strong> again.</p> |
|
|
591 |
<pre class="r watch-out"><code>options(java.parameters = "-Xmx4g") |
|
|
592 |
library(RBioFormats)</code></pre> |
|
|
593 |
<p><br></p> |
|
|
594 |
<div id="quality-control" class="section level2"> |
|
|
595 |
<h2>Quality Control</h2> |
|
|
596 |
<p>Once the GeoMx data is imported, we can start off with examining key |
|
|
597 |
quality control measures and statistics on each segment to investigate |
|
|
598 |
each individual ROI such as sequencing saturation and the number of |
|
|
599 |
cells (nuclei) within each segment. VoltRon also provides the total |
|
|
600 |
number of unique transcripts per ROI and stores in the metadata.</p> |
|
|
601 |
<pre class="r watch-out"><code>library(ggplot2) |
|
|
602 |
vrBarPlot(GeoMxR1, |
|
|
603 |
features = c("Count", "Nuclei.count", "Sequencing.saturation"), |
|
|
604 |
x.label = "ROI.name", group.by = "ROI.type") + |
|
|
605 |
theme(axis.text.x = element_text(size = 3))</code></pre> |
|
|
606 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot.png" class="center"></p> |
|
|
607 |
<p>For measuring the quality of individual ROIs, we can add a new |
|
|
608 |
metadata column, called <strong>CountPerNuclei</strong>, to check the |
|
|
609 |
average quality of cells per ROI. It seems some number of ROIs with low |
|
|
610 |
counts per nuclei also have low sequencing saturation.</p> |
|
|
611 |
<pre class="r watch-out"><code>GeoMxR1$CountPerNuclei <- GeoMxR1$Count/GeoMxR1$Nuclei.count |
|
|
612 |
vrBarPlot(GeoMxR1, |
|
|
613 |
features = c("Count", "Nuclei.count", |
|
|
614 |
"Sequencing.saturation", "CountPerNuclei"), |
|
|
615 |
x.label = "ROI.name", group.by = "ROI.type", ncol = 2) + |
|
|
616 |
theme(axis.text.x = element_text(size = 5))</code></pre> |
|
|
617 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot2.png" class="center"></p> |
|
|
618 |
<p><br></p> |
|
|
619 |
</div> |
|
|
620 |
<div id="processing" class="section level2"> |
|
|
621 |
<h2>Processing</h2> |
|
|
622 |
<p>We can now filter ROIs based on our earlier observation of them |
|
|
623 |
having low count per nuclei where some also have low sequencing |
|
|
624 |
saturation.</p> |
|
|
625 |
<pre class="r watch-out"><code># Filter for count per nuclei |
|
|
626 |
GeoMxR1 <- subset(GeoMxR1, subset = CountPerNuclei > 500)</code></pre> |
|
|
627 |
<p>We then filter genes with low counts by extracting the count matrix |
|
|
628 |
and putting aside all genes whose maximum count across all 87 ROIs are |
|
|
629 |
less than 10.</p> |
|
|
630 |
<pre class="r watch-out"><code>GeoMxR1_data <- vrData(GeoMxR1, norm = FALSE) |
|
|
631 |
feature_ind <- apply(GeoMxR1_data, 1, function(x) max(x) > 10) |
|
|
632 |
selected_features <- vrFeatures(GeoMxR1)[feature_ind] |
|
|
633 |
GeoMxR1_lessfeatures <- subset(GeoMxR1, features = selected_features)</code></pre> |
|
|
634 |
<p>VoltRon is capable of normalizing data provided by a diverse set of |
|
|
635 |
spatial technologies, including the quantile normalization method |
|
|
636 |
suggested by the <a |
|
|
637 |
href="https://nanostring.com/support-documents/geomx-dsp-data-analysis-user-manual/">GeoMx |
|
|
638 |
DSP Data Analysis User Manual</a> which scales the ROI profiles to the |
|
|
639 |
third quartile followed by the geometric mean of all third quartiles |
|
|
640 |
multipled to the scaled profile.</p> |
|
|
641 |
<pre class="r watch-out"><code>GeoMxR1 <- normalizeData(GeoMxR1, method = "Q3Norm")</code></pre> |
|
|
642 |
<p><br></p> |
|
|
643 |
</div> |
|
|
644 |
<div id="interactive-subsetting" class="section level2"> |
|
|
645 |
<h2>Interactive Subsetting</h2> |
|
|
646 |
<p>Spatially informed genomic technologies heavily depend on image |
|
|
647 |
manipulation as images provide an additional set of information. Hence, |
|
|
648 |
VoltRon incorporates several interactive built-in utilities. One such |
|
|
649 |
functionality allows manipulating images of VoltRon assays where users |
|
|
650 |
can interactively choose subsets of images. However, we first resize the |
|
|
651 |
morphology image by providing the width of the new image (thus height |
|
|
652 |
will be reduced to preserve the aspect ratio).</p> |
|
|
653 |
<pre class="r watch-out"><code># resizing the image |
|
|
654 |
# GeoMxR1 <- resizeImage(GeoMxR1, size = 4000)</code></pre> |
|
|
655 |
<p>VoltRon provides <strong>a mini Shiny app</strong> for subsetting |
|
|
656 |
spatial points of a VoltRon object by using the image as a reference. |
|
|
657 |
This app is particularly useful when multiple tissue sections were |
|
|
658 |
fitted to a scan area of a slide, such as the one from GeoMx DSP |
|
|
659 |
instrument. We use <strong>interactive = TRUE</strong> option in the |
|
|
660 |
subset function to call the mini Shiny app, and select bounding boxes of |
|
|
661 |
each newly created subset. <strong>Please continue until all eight |
|
|
662 |
sections are selected and subsetted</strong>.</p> |
|
|
663 |
<pre class="r watch-out"><code>GeoMxR1_subset <- subset(GeoMxR1, interactive = TRUE)</code></pre> |
|
|
664 |
<p><img width="85%" height="85%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/interactivesubset.gif" class="center"></p> |
|
|
665 |
<p>We can now merge the list of subsets, or samples, each associated |
|
|
666 |
with one of eight sections. You can provide a list of names for the |
|
|
667 |
newly subsetted samples.</p> |
|
|
668 |
<pre class="r watch-out"><code>GeoMxR1_subset_list <- GeoMxR1_subset$subsets |
|
|
669 |
GeoMxR1 <- merge(GeoMxR1_subset_list[[1]], GeoMxR1_subset_list[-1]) |
|
|
670 |
GeoMxR1</code></pre> |
|
|
671 |
<pre><code>VoltRon Object |
|
|
672 |
prolonged case 4: |
|
|
673 |
Layers: Section1 |
|
|
674 |
acute case 3: |
|
|
675 |
Layers: Section1 |
|
|
676 |
control case 2: |
|
|
677 |
Layers: Section1 |
|
|
678 |
acute case 1: |
|
|
679 |
Layers: Section1 |
|
|
680 |
acute case 2: |
|
|
681 |
Layers: Section1 |
|
|
682 |
... |
|
|
683 |
There are 8 samples in total |
|
|
684 |
Assays: GeoMx(Main) </code></pre> |
|
|
685 |
<p><br></p> |
|
|
686 |
<p>You may also save the selected image subsets and reproduce the |
|
|
687 |
interactive subsetting operation for later use.</p> |
|
|
688 |
<pre class="r watch-out"><code>samples <- c("prolonged case 4", "acute case 3", "control case 2", |
|
|
689 |
"acute case 1", "acute case 2", "prolonged case 5", |
|
|
690 |
"prolonged case 3", "control case 1") |
|
|
691 |
subset_info_list <- GeoMxR1_subset$subset_info_list[[1]] |
|
|
692 |
GeoMxR1_subset_list <- list() |
|
|
693 |
for(i in 1:length(subset_info_list)){ |
|
|
694 |
GeoMxR1_subset_list[[i]] <- subset(GeoMxR1, image = subset_info_list[i]) |
|
|
695 |
GeoMxR1_subset_list[[i]] <- samples[i] |
|
|
696 |
} |
|
|
697 |
GeoMxR1 <- merge(GeoMxR1_subset_list[[1]], GeoMxR1_subset_list[-1])</code></pre> |
|
|
698 |
<p><br></p> |
|
|
699 |
</div> |
|
|
700 |
<div id="visualization" class="section level2"> |
|
|
701 |
<h2>Visualization</h2> |
|
|
702 |
<p>We will now select sections of interests from the VoltRon object, and |
|
|
703 |
visualize ROIs and features for each of these sections.</p> |
|
|
704 |
<p>The function <strong>vrSpatialPlot</strong> plots categorical |
|
|
705 |
attributes associated with ROIs. In this case, we will visualize types |
|
|
706 |
of ROIs that were labelled and annotated during ROI selection.</p> |
|
|
707 |
<pre class="r watch-out"><code>GeoMxR1_subset <- subset(GeoMxR1, sample = c("prolonged case 4","acute case 3")) |
|
|
708 |
vrSpatialPlot(GeoMxR1_subset, group.by = "ROI.type", ncol = 3, alpha = 0.6)</code></pre> |
|
|
709 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot.png" class="center"></p> |
|
|
710 |
<p>The function <strong>vrSpatialFeaturePlot</strong> detects the number |
|
|
711 |
of assays within each VoltRon object and visualizes each feature per |
|
|
712 |
each spatial image. A grid of images are visualized either the number of |
|
|
713 |
assays or the number of features are larger than 1. Here, we visualize |
|
|
714 |
the normalized expression of COL1A1 and C1S, two fibrotic markers, |
|
|
715 |
across ROIs of two prolonged covid cases. One may observe that the |
|
|
716 |
fibrotic regions of prolonged case 5 have considerably more COL1A1 and |
|
|
717 |
C1S compared to prolonged case 4.</p> |
|
|
718 |
<pre class="r watch-out"><code>GeoMxR1_subset <- subset(GeoMxR1, sample = c("prolonged case 4","prolonged case 5")) |
|
|
719 |
vrSpatialFeaturePlot(GeoMxR1_subset, features = c("COL1A1", "C1S"), group.by = "ROI.name", |
|
|
720 |
log = TRUE, label = TRUE, keep.scale = "feature", title.size = 15)</code></pre> |
|
|
721 |
<p><img width="85%" height="85%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_featureplot.png" class="center"></p> |
|
|
722 |
<p><br></p> |
|
|
723 |
</div> |
|
|
724 |
<div id="dimensionality-reduction" class="section level2"> |
|
|
725 |
<h2>Dimensionality Reduction</h2> |
|
|
726 |
<p>We can now process the normalized and demultiplexed samples to map |
|
|
727 |
ROIs across all sections onto lower dimensional spaces. The functions |
|
|
728 |
<strong>getFeatures</strong> and <strong>getPCA</strong> select features |
|
|
729 |
(i.e. genes) of interest from the data matrix across all samples and |
|
|
730 |
reduce it to a selected number of principal components.</p> |
|
|
731 |
<pre class="r watch-out"><code>GeoMxR1 <- getFeatures(GeoMxR1) |
|
|
732 |
GeoMxR1 <- getPCA(GeoMxR1, dims = 30)</code></pre> |
|
|
733 |
<p>The function <strong>vrEmbeddingPlot</strong> can be used to |
|
|
734 |
visualize embedding spaces (pca, umap, etc.) for any spatial point |
|
|
735 |
supported by VoltRon, hence cells, spots and ROI are all visualized |
|
|
736 |
using the same set of functions. Here we generate a new metadata column |
|
|
737 |
that represents the <strong>disease durations (control, acute and |
|
|
738 |
prolonged case)</strong>, then map gene profiles to the first two |
|
|
739 |
principal components.</p> |
|
|
740 |
<pre class="r watch-out"><code>GeoMxR1$Condition <- gsub(" [0-9]+$", "", GeoMxR1$Sample) |
|
|
741 |
vrEmbeddingPlot(GeoMxR1, group.by = c("Condition"), embedding = "pca", pt.size = 3)</code></pre> |
|
|
742 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_embeddingplotsingle.png" class="center"></p> |
|
|
743 |
<p>VoltRon provides additional dimensionality reduction techniques such |
|
|
744 |
as <strong>UMAP</strong>.</p> |
|
|
745 |
<pre class="r watch-out"><code>GeoMxR1 <- getUMAP(GeoMxR1)</code></pre> |
|
|
746 |
<p>Gene expression profiles of ROIs associated with prolonged case |
|
|
747 |
sections seem to show some heterogeneity. We now color segments by |
|
|
748 |
section (or replicate, <strong>Sample</strong>) to observe the sources |
|
|
749 |
of variability. Three replicates of prolonged cases exhibit three |
|
|
750 |
different clusters of ROIs.</p> |
|
|
751 |
<pre class="r watch-out"><code>vrEmbeddingPlot(GeoMxR1, group.by = c("Condition"), embedding = "pca", pt.size = 3) |
|
|
752 |
vrEmbeddingPlot(GeoMxR1, group.by = c("ROI.type"), embedding = "pca", pt.size = 3) |
|
|
753 |
vrEmbeddingPlot(GeoMxR1, group.by = c("ROI.type"), embedding = "umap", pt.size = 3)</code></pre> |
|
|
754 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_embeddingplot.png" class="center"></p> |
|
|
755 |
</div> |
|
|
756 |
<div id="differential-expression-analysis" class="section level2"> |
|
|
757 |
<h2>Differential Expression Analysis</h2> |
|
|
758 |
<p>VoltRon provides wrapping functions for calling tools and methods |
|
|
759 |
from popular differential expression analysis package such as <a |
|
|
760 |
href="https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8">DESeq2</a>. |
|
|
761 |
We utilize <strong>DESeq2</strong> to find differentially expressed |
|
|
762 |
genes across each pair of ROI types conditions.</p> |
|
|
763 |
<pre class="r watch-out"><code># get DE for all conditions |
|
|
764 |
library(DESeq2) |
|
|
765 |
library(dplyr) |
|
|
766 |
DEresults <- getDiffExp(GeoMxR1, group.by = "ROI.type", |
|
|
767 |
group.base = "vessel", method = "DESeq2") |
|
|
768 |
DEresults_sig <- DEresults %>% filter(!is.na(padj)) %>% |
|
|
769 |
filter(padj < 0.05, abs(log2FoldChange) > 1) |
|
|
770 |
head(DEresults_sig)</code></pre> |
|
|
771 |
<div> |
|
|
772 |
<pre><code style="font-size: 11.7px;"> baseMean log2FoldChange lfcSE stat pvalue padj gene comparison |
|
|
773 |
ACTA2 33.48395 1.508701 0.3458464 4.362343 1.286768e-05 4.902586e-03 ACTA2 ROI.type_vessel_epithelium |
|
|
774 |
ADAMTS1 22.29160 1.152556 0.2272085 5.072680 3.922515e-07 4.109815e-04 ADAMTS1 ROI.type_vessel_epithelium |
|
|
775 |
C11orf96 27.48924 1.142085 0.3041057 3.755554 1.729585e-04 2.588819e-02 C11orf96 ROI.type_vessel_epithelium |
|
|
776 |
CNN1 16.87670 1.112662 0.2680222 4.151381 3.304757e-05 9.766004e-03 CNN1 ROI.type_vessel_epithelium |
|
|
777 |
CRYAB 21.85960 1.264747 0.2173272 5.819552 5.900570e-09 2.472929e-05 CRYAB ROI.type_vessel_epithelium |
|
|
778 |
FLNA 44.50957 1.270025 0.3243115 3.916066 9.000548e-05 1.985331e-02 FLNA ROI.type_vessel_epithelium</code></pre> |
|
|
779 |
</div> |
|
|
780 |
<p><br></p> |
|
|
781 |
<p>The <strong>vrHeatmapPlot</strong> takes a set of features for any |
|
|
782 |
type of spatial point (cells, spots and ROIs) and visualizes scaled data |
|
|
783 |
per each feature. We select <strong>highlight.some = TRUE</strong> to |
|
|
784 |
annotate features which could be large in size where you can also select |
|
|
785 |
the number of such highlighted genes with <strong>n_highlight</strong>. |
|
|
786 |
There seems to be two groups of fibrotic regions that most likely |
|
|
787 |
associated with two prolonged case samples.</p> |
|
|
788 |
<pre class="r watch-out"><code># get DE for all conditions |
|
|
789 |
library(ComplexHeatmap) |
|
|
790 |
vrHeatmapPlot(GeoMxR1, features = unique(DEresults_sig$gene), group.by = "ROI.type", |
|
|
791 |
highlight.some = TRUE, n_highlight = 40)</code></pre> |
|
|
792 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap.png" class="center"></p> |
|
|
793 |
<p><br></p> |
|
|
794 |
<p>In order to get a deeper understanding of differences between |
|
|
795 |
fibrotic regions across two prolonged case replicates. We first subset |
|
|
796 |
the GeoMx data to only sections with fibrotic ROIs.</p> |
|
|
797 |
<pre class="r watch-out"><code>fibrotic_ROI <- vrSpatialPoints(GeoMxR1)[GeoMxR1$ROI.type == "fibrotic"] |
|
|
798 |
GeoMxR1_subset <- subset(GeoMxR1, spatialpoints = fibrotic_ROI) |
|
|
799 |
vrSpatialPlot(GeoMxR1_subset, group.by = "ROI.type", ncol = 3, alpha = 0.4)</code></pre> |
|
|
800 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_fibrotic.png" class="center"></p> |
|
|
801 |
<p>The <strong>getDiffExp</strong> function is capable of testing |
|
|
802 |
differential expression across all metadata columns, including the |
|
|
803 |
<strong>Samples</strong> column that captures labels of different tissue |
|
|
804 |
sections. Macrophage markers such as CD68 and CD163 are differentially |
|
|
805 |
expressed in fibrotic regions of case 5 compared to case 4, including |
|
|
806 |
FN1, a profibrotic gene whose expression can be found on |
|
|
807 |
macrophages.</p> |
|
|
808 |
<pre class="r watch-out"><code>DEresults <- getDiffExp(GeoMxR1_subset, group.by = "Sample", |
|
|
809 |
group.base = "prolonged case 5", method = "DESeq2") |
|
|
810 |
DEresults_sig <- DEresults %>% filter(!is.na(padj)) %>% |
|
|
811 |
filter(padj < 0.05, abs(log2FoldChange) > 1) |
|
|
812 |
DEresults_sig <- DEresults_sig[order(DEresults_sig$log2FoldChange, decreasing = TRUE),] |
|
|
813 |
head(DEresults_sig)</code></pre> |
|
|
814 |
<div> |
|
|
815 |
<pre><code style="font-size: 10.7px;"> baseMean log2FoldChange lfcSE stat pvalue padj gene comparison |
|
|
816 |
COL3A1 708.5599 6.635411 0.5198805 12.763338 2.626978e-37 1.596809e-33 COL3A1 Sample_prolonged case 5_prolonged case 4 |
|
|
817 |
COL1A2 836.0790 5.237228 0.4407380 11.882861 1.453071e-32 4.416246e-29 COL1A2 Sample_prolonged case 5_prolonged case 4 |
|
|
818 |
COL1A1 460.2184 5.175153 0.5237868 9.880267 5.069785e-23 3.081669e-20 COL1A1 Sample_prolonged case 5_prolonged case 4 |
|
|
819 |
FN1 278.6594 5.083687 0.3717299 13.675754 1.417301e-42 1.723013e-38 FN1 Sample_prolonged case 5_prolonged case 4 |
|
|
820 |
HBB 202.7693 4.944228 0.4884175 10.122955 4.370193e-24 3.794888e-21 HBB Sample_prolonged case 5_prolonged case 4 |
|
|
821 |
A2M 466.4328 4.925236 0.4542682 10.842133 2.173435e-27 3.774636e-24 A2M Sample_prolonged case 5_prolonged case 4</code></pre> |
|
|
822 |
</div> |
|
|
823 |
<p><br></p> |
|
|
824 |
<!-- Markers of each individual tissue section for each disease duration is shown on the Heatmap. --> |
|
|
825 |
<!-- ```{r eval = FALSE, class.source="watch-out"} --> |
|
|
826 |
<!-- # get DE for all conditions --> |
|
|
827 |
<!-- vrHeatmapPlot(GeoMxR1, features = unique(DEresults_sig$gene), --> |
|
|
828 |
<!-- group.by = "Sample", highlight.some = TRUE) --> |
|
|
829 |
<!-- ``` --> |
|
|
830 |
<!-- <img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap2.png" class="center"> --> |
|
|
831 |
<!-- <br> --> |
|
|
832 |
</div> |
|
|
833 |
<div id="roi-deconvolution" class="section level2"> |
|
|
834 |
<h2>ROI Deconvolution</h2> |
|
|
835 |
<p>VoltRon supports multiple bulk RNA deconvolution algorithms to |
|
|
836 |
analyze the cellular composition of both ROIs and spots. In order to |
|
|
837 |
integrate the scRNA data and the GeoMx data sets within the VoltRon |
|
|
838 |
objects, we will use the <a |
|
|
839 |
href="https://xuranw.github.io/MuSiC/articles/MuSiC.html">MuSiC</a> |
|
|
840 |
package. We will use a human lung scRNA dataset (GSE198864) as |
|
|
841 |
reference, which is found <a |
|
|
842 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GSE198864_lung.rds">here</a>.</p> |
|
|
843 |
<pre class="r watch-out"><code>set.seed(1) |
|
|
844 |
library(Seurat) |
|
|
845 |
library(SingleCellExperiment) |
|
|
846 |
seu <- readRDS("GSE198864_lung.rds") |
|
|
847 |
scRNAlung <- seu[,sample(1:ncol(seu), 10000, replace = FALSE)] |
|
|
848 |
|
|
|
849 |
# Visualize clusters |
|
|
850 |
DimPlot(scRNAlung, reduction = "umap", label = T, group.by = "Clusters") + NoLegend()</code></pre> |
|
|
851 |
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_deconvolution_singlecell.png" class="center"></p> |
|
|
852 |
<p>We utilize the <strong>getDeconvolution</strong> function to call |
|
|
853 |
wrapper functions for deconvolution algorithms (see ). For all layers |
|
|
854 |
with GoeMx assays, an additional assay within the same layer with |
|
|
855 |
<strong>_decon</strong> postfix will be created. The |
|
|
856 |
<strong>sc.object</strong> argument can either be a |
|
|
857 |
<strong>Seurat</strong> or <strong>SingleCellExperiment</strong> |
|
|
858 |
object.</p> |
|
|
859 |
<pre class="r watch-out"><code>library(MuSiC) |
|
|
860 |
GeoMxR1 <- getDeconvolution(GeoMxR1, |
|
|
861 |
sc.object = scRNAlung, sc.assay = "RNA", |
|
|
862 |
sc.cluster = "Clusters", sc.samples = "orig.ident")</code></pre> |
|
|
863 |
<pre><code>VoltRon Object |
|
|
864 |
prolonged case 4: |
|
|
865 |
Layers: Section1 |
|
|
866 |
acute case 3: |
|
|
867 |
Layers: Section1 |
|
|
868 |
control case 2: |
|
|
869 |
Layers: Section1 |
|
|
870 |
acute case 1: |
|
|
871 |
Layers: Section1 |
|
|
872 |
acute case 2: |
|
|
873 |
Layers: Section1 |
|
|
874 |
... |
|
|
875 |
There are 8 samples in total |
|
|
876 |
Assays: GeoMx(Main) |
|
|
877 |
Features: RNA(Main) NegProbe Decon </code></pre> |
|
|
878 |
<p>We can now visualize cell type compositions of each ROI. Before |
|
|
879 |
running <strong>vrProportionPlot</strong> function, we need to set the |
|
|
880 |
main feature type as <strong>Decon</strong>. One may see the increased |
|
|
881 |
proportion of cells NK cells and T cells in immune ROIs.</p> |
|
|
882 |
<pre class="r watch-out"><code>vrMainFeatureType(GeoMxR1) <- "Decon" |
|
|
883 |
vrProportionPlot(GeoMxR1, x.label = "ROI.name")</code></pre> |
|
|
884 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_deconvolution.png" class="center"></p> |
|
|
885 |
<p>Here, we can subset the GeoMx object further to dive deep into the |
|
|
886 |
cellular proportions of each fibrotic region of prolonged cases. |
|
|
887 |
Comparing prolonged case 5 against case 4, we see an increase in the |
|
|
888 |
cellular population of the stromal cluster defined in <a |
|
|
889 |
href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9922044/">Mothes et. |
|
|
890 |
al 2023</a> (that are both vascular and airway smooth muscle cells), and |
|
|
891 |
an increase abundance of macrophages which may indicate that these |
|
|
892 |
macrophages are profibrotic being within and close to fibrotic regions |
|
|
893 |
with increased gene expression of FN1.</p> |
|
|
894 |
<pre class="r watch-out"><code># subsetting fibrotic regions |
|
|
895 |
spatialpoints <- vrSpatialPoints(GeoMxR1)[GeoMxR1$ROI.type == "fibrotic"] |
|
|
896 |
GeoMxR1_subset <- subset(GeoMxR1, spatialpoints = spatialpoints) |
|
|
897 |
|
|
|
898 |
# Proportion plot |
|
|
899 |
vrProportionPlot(GeoMxR1_subset, x.label = "ROI.name", split.method = "facet_grid", |
|
|
900 |
split.by = "Sample") |
|
|
901 |
|
|
|
902 |
# barplot |
|
|
903 |
vrBarPlot(GeoMxR1_subset, features = c("stromal", "macrophages"), group.by = "Sample", |
|
|
904 |
x.label = "ROI.name", split.by = "Sample")</code></pre> |
|
|
905 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_heatmap_fibrotic.png" class="center"></p> |
|
|
906 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_barplot_prop_fibrotic.png" class="center"></p> |
|
|
907 |
</div> |
|
|
908 |
<div id="he-image-integration" class="section level2"> |
|
|
909 |
<h2>H&E Image Integration</h2> |
|
|
910 |
<p>Questions may arise if in fact these ROIs are fibrotic even though |
|
|
911 |
they were initially annotated as fibrotic regions. VoltRon provides |
|
|
912 |
advanced image registration workflows which we can use to H&E images |
|
|
913 |
of from the same TMA blocks where GeoMx slides were established.</p> |
|
|
914 |
<p>We first import the H&E image of the prolonged case 4 TMA section |
|
|
915 |
using the <strong>importImageData</strong> function. This will import |
|
|
916 |
the H&E image as a standalone VoltRon object. For more information |
|
|
917 |
on image-based VoltRon objects, see the <a |
|
|
918 |
href="pixelanalysis.html">Downstream analysis of Pixels</a> section.</p> |
|
|
919 |
<p>We will use the H&E image of TMA section taken from the same |
|
|
920 |
block as the Prolonged case 4. You can download the image from <a |
|
|
921 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/ROIanalysis/GeoMx/prolonged_case4_HE.tif">here</a>.</p> |
|
|
922 |
<pre class="r watch-out"><code>vrHEimage <- importImageData("prolonged_case4_HE.tif", channel_names = "H&E") |
|
|
923 |
vrImages(vrHEimage, scale.perc = 40)</code></pre> |
|
|
924 |
<p><img width="50%" height="50%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/prolonged_case4_HE.png" class="center"></p> |
|
|
925 |
<p><br></p> |
|
|
926 |
<p>We can now register the GeoMx slide with the newly imported H&E |
|
|
927 |
based VoltRon object. Since two images are associated with TMA sections |
|
|
928 |
that are not adjacent, we have to rely on the localization of vessels |
|
|
929 |
visible in both images for alignment. VoltRon allows manipulating |
|
|
930 |
multiple channels of an image object two choose the best background |
|
|
931 |
image for manual landmark selection. For more information on both manual |
|
|
932 |
and automated registration of VoltRon objects, see <a |
|
|
933 |
href="registration.html">here</a>.</p> |
|
|
934 |
<p>VoltRon provides multiple registration methods to align images. Here, |
|
|
935 |
after running the <strong>registerSpatialData</strong> function, we |
|
|
936 |
choose the <strong>Homography + Non-rigid (TPS)</strong> method which |
|
|
937 |
utilizes a perspective transformation on the H&E image followed by a |
|
|
938 |
thin plate spline (TPS) alignment. The perspective transformation |
|
|
939 |
performs a global alignment between the H&E image and the main GeoMx |
|
|
940 |
image (here the scan image with combined antibody channels), and the TPS |
|
|
941 |
method allows correct local deformations between the perspective |
|
|
942 |
transformed H&E image and the GeoMx image for a more accurate</p> |
|
|
943 |
<pre class="r watch-out"><code>GeoMxR1_subset <- subset(GeoMxR1, sample = c("prolonged case 4")) |
|
|
944 |
GeoMxReg <- registerSpatialData(reference_spatdata = GeoMxR1_subset, |
|
|
945 |
query_spatdata = vrHEimage)</code></pre> |
|
|
946 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_manualregistration.png" class="center"></p> |
|
|
947 |
<p>The result of the registration is a list of registered VoltRon |
|
|
948 |
objects which we can use for parsing the registered image as well. In |
|
|
949 |
this case, the second element of the resulting list would be the |
|
|
950 |
registered H&E based VoltRon object.</p> |
|
|
951 |
<pre class="r watch-out"><code>vrHEimage_reg <- GeoMxReg$registered_spat[[2]]</code></pre> |
|
|
952 |
<p>We can check the additional coordinate system now available for the |
|
|
953 |
registered H&E image. One is the coordinate system with the original |
|
|
954 |
image, and the other with the one that is registered.</p> |
|
|
955 |
<pre class="r watch-out"><code>vrSpatialNames(vrHEimage_reg)</code></pre> |
|
|
956 |
<pre><code>[1] "main" "main_reg"</code></pre> |
|
|
957 |
<p>We can also exchange images where the H&E image now is registered |
|
|
958 |
to the perspective of the GeoMx channels, and can be defined as a new |
|
|
959 |
channel in the original GeoMx object.</p> |
|
|
960 |
<pre class="r watch-out"><code>vrImages(GeoMxR1_subset[["Assay1"]], name = "main", channel = "H&E") <- vrImages(vrHEimage_reg, name = "main_reg", channel = "H&E")</code></pre> |
|
|
961 |
<p>We can now observe the new channels (H&E) available for the GeoMx |
|
|
962 |
assay using <strong>vrImageChannelNames</strong>. H&E is saved as a |
|
|
963 |
separate channel along with the originally available antibody channels |
|
|
964 |
of the original GeoMx experiment.</p> |
|
|
965 |
<pre class="r watch-out"><code>vrImageChannelNames(GeoMxR1_subset)</code></pre> |
|
|
966 |
<div> |
|
|
967 |
<pre><code style="font-size: 12px;"> Assay Layer Sample Spatial Channels |
|
|
968 |
Assay1 GeoMx Section1 prolonged case 4 main scanimage,DNA,PanCK,CD45,Alpha Smooth Muscle Actin,H&E</code></pre> |
|
|
969 |
</div> |
|
|
970 |
<p>We can now visualize the ROIs and their annotations where the |
|
|
971 |
registered H&E visible in the background. We define the spatial key |
|
|
972 |
<strong>main</strong> and the channel name <strong>H&E</strong>.</p> |
|
|
973 |
<pre class="r watch-out"><code>vrSpatialPlot(GeoMxR1_subset, group.by = "ROI.type", alpha = 0.7, |
|
|
974 |
spatial = "main", channel = "H&E")</code></pre> |
|
|
975 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_withHE.png" class="center"></p> |
|
|
976 |
<p>Interactive Visualization can also be used to zoom in to ROIs and |
|
|
977 |
investigate the pathology associated with GeoMx ROIs labeled as |
|
|
978 |
fibrotic.</p> |
|
|
979 |
<pre class="r watch-out"><code>vrSpatialPlot(GeoMxR1_subset, group.by = "ROI.type", alpha = 0.7, |
|
|
980 |
spatial = "main", channel = "H&E", |
|
|
981 |
interactive = TRUE)</code></pre> |
|
|
982 |
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/roi_spatialplot_withHE_interactive.png" class="center"></p> |
|
|
983 |
</div> |
|
|
984 |
</div> |
|
|
985 |
|
|
|
986 |
|
|
|
987 |
|
|
|
988 |
</div> |
|
|
989 |
</div> |
|
|
990 |
|
|
|
991 |
</div> |
|
|
992 |
|
|
|
993 |
<script> |
|
|
994 |
|
|
|
995 |
// add bootstrap table styles to pandoc tables |
|
|
996 |
function bootstrapStylePandocTables() { |
|
|
997 |
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed'); |
|
|
998 |
} |
|
|
999 |
$(document).ready(function () { |
|
|
1000 |
bootstrapStylePandocTables(); |
|
|
1001 |
}); |
|
|
1002 |
|
|
|
1003 |
|
|
|
1004 |
</script> |
|
|
1005 |
|
|
|
1006 |
<!-- tabsets --> |
|
|
1007 |
|
|
|
1008 |
<script> |
|
|
1009 |
$(document).ready(function () { |
|
|
1010 |
window.buildTabsets("TOC"); |
|
|
1011 |
}); |
|
|
1012 |
|
|
|
1013 |
$(document).ready(function () { |
|
|
1014 |
$('.tabset-dropdown > .nav-tabs > li').click(function () { |
|
|
1015 |
$(this).parent().toggleClass('nav-tabs-open'); |
|
|
1016 |
}); |
|
|
1017 |
}); |
|
|
1018 |
</script> |
|
|
1019 |
|
|
|
1020 |
<!-- code folding --> |
|
|
1021 |
|
|
|
1022 |
<script> |
|
|
1023 |
$(document).ready(function () { |
|
|
1024 |
|
|
|
1025 |
// temporarily add toc-ignore selector to headers for the consistency with Pandoc |
|
|
1026 |
$('.unlisted.unnumbered').addClass('toc-ignore') |
|
|
1027 |
|
|
|
1028 |
// move toc-ignore selectors from section div to header |
|
|
1029 |
$('div.section.toc-ignore') |
|
|
1030 |
.removeClass('toc-ignore') |
|
|
1031 |
.children('h1,h2,h3,h4,h5').addClass('toc-ignore'); |
|
|
1032 |
|
|
|
1033 |
// establish options |
|
|
1034 |
var options = { |
|
|
1035 |
selectors: "h1,h2,h3", |
|
|
1036 |
theme: "bootstrap3", |
|
|
1037 |
context: '.toc-content', |
|
|
1038 |
hashGenerator: function (text) { |
|
|
1039 |
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_'); |
|
|
1040 |
}, |
|
|
1041 |
ignoreSelector: ".toc-ignore", |
|
|
1042 |
scrollTo: 0 |
|
|
1043 |
}; |
|
|
1044 |
options.showAndHide = false; |
|
|
1045 |
options.smoothScroll = false; |
|
|
1046 |
|
|
|
1047 |
// tocify |
|
|
1048 |
var toc = $("#TOC").tocify(options).data("toc-tocify"); |
|
|
1049 |
}); |
|
|
1050 |
</script> |
|
|
1051 |
|
|
|
1052 |
<!-- dynamically load mathjax for compatibility with self-contained --> |
|
|
1053 |
<script> |
|
|
1054 |
(function () { |
|
|
1055 |
var script = document.createElement("script"); |
|
|
1056 |
script.type = "text/javascript"; |
|
|
1057 |
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; |
|
|
1058 |
document.getElementsByTagName("head")[0].appendChild(script); |
|
|
1059 |
})(); |
|
|
1060 |
</script> |
|
|
1061 |
|
|
|
1062 |
</body> |
|
|
1063 |
</html> |