|
a |
|
b/docs/registration.html |
|
|
1 |
<!DOCTYPE html> |
|
|
2 |
|
|
|
3 |
<html> |
|
|
4 |
|
|
|
5 |
<head> |
|
|
6 |
|
|
|
7 |
<meta charset="utf-8" /> |
|
|
8 |
<meta name="generator" content="pandoc" /> |
|
|
9 |
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
<title>Image Registration</title> |
|
|
15 |
|
|
|
16 |
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script> |
|
|
17 |
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script> |
|
|
18 |
<meta name="viewport" content="width=device-width, initial-scale=1" /> |
|
|
19 |
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" /> |
|
|
20 |
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script> |
|
|
21 |
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script> |
|
|
22 |
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script> |
|
|
23 |
<style>h1 {font-size: 34px;} |
|
|
24 |
h1.title {font-size: 38px;} |
|
|
25 |
h2 {font-size: 30px;} |
|
|
26 |
h3 {font-size: 24px;} |
|
|
27 |
h4 {font-size: 18px;} |
|
|
28 |
h5 {font-size: 16px;} |
|
|
29 |
h6 {font-size: 12px;} |
|
|
30 |
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);} |
|
|
31 |
pre:not([class]) { background-color: white }</style> |
|
|
32 |
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script> |
|
|
33 |
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" /> |
|
|
34 |
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script> |
|
|
35 |
<script src="site_libs/navigation-1.1/tabsets.js"></script> |
|
|
36 |
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" /> |
|
|
37 |
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script> |
|
|
38 |
<link href="site_libs/font-awesome-6.5.2/css/all.min.css" rel="stylesheet" /> |
|
|
39 |
<link href="site_libs/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet" /> |
|
|
40 |
|
|
|
41 |
<style type="text/css"> |
|
|
42 |
code{white-space: pre-wrap;} |
|
|
43 |
span.smallcaps{font-variant: small-caps;} |
|
|
44 |
span.underline{text-decoration: underline;} |
|
|
45 |
div.column{display: inline-block; vertical-align: top; width: 50%;} |
|
|
46 |
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} |
|
|
47 |
ul.task-list{list-style: none;} |
|
|
48 |
</style> |
|
|
49 |
|
|
|
50 |
<style type="text/css">code{white-space: pre;}</style> |
|
|
51 |
<script type="text/javascript"> |
|
|
52 |
if (window.hljs) { |
|
|
53 |
hljs.configure({languages: []}); |
|
|
54 |
hljs.initHighlightingOnLoad(); |
|
|
55 |
if (document.readyState && document.readyState === "complete") { |
|
|
56 |
window.setTimeout(function() { hljs.initHighlighting(); }, 0); |
|
|
57 |
} |
|
|
58 |
} |
|
|
59 |
</script> |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
<style type = "text/css"> |
|
|
70 |
.main-container { |
|
|
71 |
max-width: 940px; |
|
|
72 |
margin-left: auto; |
|
|
73 |
margin-right: auto; |
|
|
74 |
} |
|
|
75 |
img { |
|
|
76 |
max-width:100%; |
|
|
77 |
} |
|
|
78 |
.tabbed-pane { |
|
|
79 |
padding-top: 12px; |
|
|
80 |
} |
|
|
81 |
.html-widget { |
|
|
82 |
margin-bottom: 20px; |
|
|
83 |
} |
|
|
84 |
button.code-folding-btn:focus { |
|
|
85 |
outline: none; |
|
|
86 |
} |
|
|
87 |
summary { |
|
|
88 |
display: list-item; |
|
|
89 |
} |
|
|
90 |
details > summary > p:only-child { |
|
|
91 |
display: inline; |
|
|
92 |
} |
|
|
93 |
pre code { |
|
|
94 |
padding: 0; |
|
|
95 |
} |
|
|
96 |
</style> |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
<style type="text/css"> |
|
|
100 |
.dropdown-submenu { |
|
|
101 |
position: relative; |
|
|
102 |
} |
|
|
103 |
.dropdown-submenu>.dropdown-menu { |
|
|
104 |
top: 0; |
|
|
105 |
left: 100%; |
|
|
106 |
margin-top: -6px; |
|
|
107 |
margin-left: -1px; |
|
|
108 |
border-radius: 0 6px 6px 6px; |
|
|
109 |
} |
|
|
110 |
.dropdown-submenu:hover>.dropdown-menu { |
|
|
111 |
display: block; |
|
|
112 |
} |
|
|
113 |
.dropdown-submenu>a:after { |
|
|
114 |
display: block; |
|
|
115 |
content: " "; |
|
|
116 |
float: right; |
|
|
117 |
width: 0; |
|
|
118 |
height: 0; |
|
|
119 |
border-color: transparent; |
|
|
120 |
border-style: solid; |
|
|
121 |
border-width: 5px 0 5px 5px; |
|
|
122 |
border-left-color: #cccccc; |
|
|
123 |
margin-top: 5px; |
|
|
124 |
margin-right: -10px; |
|
|
125 |
} |
|
|
126 |
.dropdown-submenu:hover>a:after { |
|
|
127 |
border-left-color: #adb5bd; |
|
|
128 |
} |
|
|
129 |
.dropdown-submenu.pull-left { |
|
|
130 |
float: none; |
|
|
131 |
} |
|
|
132 |
.dropdown-submenu.pull-left>.dropdown-menu { |
|
|
133 |
left: -100%; |
|
|
134 |
margin-left: 10px; |
|
|
135 |
border-radius: 6px 0 6px 6px; |
|
|
136 |
} |
|
|
137 |
</style> |
|
|
138 |
|
|
|
139 |
<script type="text/javascript"> |
|
|
140 |
// manage active state of menu based on current page |
|
|
141 |
$(document).ready(function () { |
|
|
142 |
// active menu anchor |
|
|
143 |
href = window.location.pathname |
|
|
144 |
href = href.substr(href.lastIndexOf('/') + 1) |
|
|
145 |
if (href === "") |
|
|
146 |
href = "index.html"; |
|
|
147 |
var menuAnchor = $('a[href="' + href + '"]'); |
|
|
148 |
|
|
|
149 |
// mark the anchor link active (and if it's in a dropdown, also mark that active) |
|
|
150 |
var dropdown = menuAnchor.closest('li.dropdown'); |
|
|
151 |
if (window.bootstrap) { // Bootstrap 4+ |
|
|
152 |
menuAnchor.addClass('active'); |
|
|
153 |
dropdown.find('> .dropdown-toggle').addClass('active'); |
|
|
154 |
} else { // Bootstrap 3 |
|
|
155 |
menuAnchor.parent().addClass('active'); |
|
|
156 |
dropdown.addClass('active'); |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
// Navbar adjustments |
|
|
160 |
var navHeight = $(".navbar").first().height() + 15; |
|
|
161 |
var style = document.createElement('style'); |
|
|
162 |
var pt = "padding-top: " + navHeight + "px; "; |
|
|
163 |
var mt = "margin-top: -" + navHeight + "px; "; |
|
|
164 |
var css = ""; |
|
|
165 |
// offset scroll position for anchor links (for fixed navbar) |
|
|
166 |
for (var i = 1; i <= 6; i++) { |
|
|
167 |
css += ".section h" + i + "{ " + pt + mt + "}\n"; |
|
|
168 |
} |
|
|
169 |
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css; |
|
|
170 |
document.head.appendChild(style); |
|
|
171 |
}); |
|
|
172 |
</script> |
|
|
173 |
|
|
|
174 |
<!-- tabsets --> |
|
|
175 |
|
|
|
176 |
<style type="text/css"> |
|
|
177 |
.tabset-dropdown > .nav-tabs { |
|
|
178 |
display: inline-table; |
|
|
179 |
max-height: 500px; |
|
|
180 |
min-height: 44px; |
|
|
181 |
overflow-y: auto; |
|
|
182 |
border: 1px solid #ddd; |
|
|
183 |
border-radius: 4px; |
|
|
184 |
} |
|
|
185 |
|
|
|
186 |
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before { |
|
|
187 |
content: "\e259"; |
|
|
188 |
font-family: 'Glyphicons Halflings'; |
|
|
189 |
display: inline-block; |
|
|
190 |
padding: 10px; |
|
|
191 |
border-right: 1px solid #ddd; |
|
|
192 |
} |
|
|
193 |
|
|
|
194 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before { |
|
|
195 |
content: "\e258"; |
|
|
196 |
font-family: 'Glyphicons Halflings'; |
|
|
197 |
border: none; |
|
|
198 |
} |
|
|
199 |
|
|
|
200 |
.tabset-dropdown > .nav-tabs > li.active { |
|
|
201 |
display: block; |
|
|
202 |
} |
|
|
203 |
|
|
|
204 |
.tabset-dropdown > .nav-tabs > li > a, |
|
|
205 |
.tabset-dropdown > .nav-tabs > li > a:focus, |
|
|
206 |
.tabset-dropdown > .nav-tabs > li > a:hover { |
|
|
207 |
border: none; |
|
|
208 |
display: inline-block; |
|
|
209 |
border-radius: 4px; |
|
|
210 |
background-color: transparent; |
|
|
211 |
} |
|
|
212 |
|
|
|
213 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li { |
|
|
214 |
display: block; |
|
|
215 |
float: none; |
|
|
216 |
} |
|
|
217 |
|
|
|
218 |
.tabset-dropdown > .nav-tabs > li { |
|
|
219 |
display: none; |
|
|
220 |
} |
|
|
221 |
</style> |
|
|
222 |
|
|
|
223 |
<!-- code folding --> |
|
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
|
227 |
<style type="text/css"> |
|
|
228 |
|
|
|
229 |
#TOC { |
|
|
230 |
margin: 25px 0px 20px 0px; |
|
|
231 |
} |
|
|
232 |
@media (max-width: 768px) { |
|
|
233 |
#TOC { |
|
|
234 |
position: relative; |
|
|
235 |
width: 100%; |
|
|
236 |
} |
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
@media print { |
|
|
240 |
.toc-content { |
|
|
241 |
/* see https://github.com/w3c/csswg-drafts/issues/4434 */ |
|
|
242 |
float: right; |
|
|
243 |
} |
|
|
244 |
} |
|
|
245 |
|
|
|
246 |
.toc-content { |
|
|
247 |
padding-left: 30px; |
|
|
248 |
padding-right: 40px; |
|
|
249 |
} |
|
|
250 |
|
|
|
251 |
div.main-container { |
|
|
252 |
max-width: 1200px; |
|
|
253 |
} |
|
|
254 |
|
|
|
255 |
div.tocify { |
|
|
256 |
width: 20%; |
|
|
257 |
max-width: 260px; |
|
|
258 |
max-height: 85%; |
|
|
259 |
} |
|
|
260 |
|
|
|
261 |
@media (min-width: 768px) and (max-width: 991px) { |
|
|
262 |
div.tocify { |
|
|
263 |
width: 25%; |
|
|
264 |
} |
|
|
265 |
} |
|
|
266 |
|
|
|
267 |
@media (max-width: 767px) { |
|
|
268 |
div.tocify { |
|
|
269 |
width: 100%; |
|
|
270 |
max-width: none; |
|
|
271 |
} |
|
|
272 |
} |
|
|
273 |
|
|
|
274 |
.tocify ul, .tocify li { |
|
|
275 |
line-height: 20px; |
|
|
276 |
} |
|
|
277 |
|
|
|
278 |
.tocify-subheader .tocify-item { |
|
|
279 |
font-size: 0.90em; |
|
|
280 |
} |
|
|
281 |
|
|
|
282 |
.tocify .list-group-item { |
|
|
283 |
border-radius: 0px; |
|
|
284 |
} |
|
|
285 |
|
|
|
286 |
.tocify-subheader { |
|
|
287 |
display: inline; |
|
|
288 |
} |
|
|
289 |
.tocify-subheader .tocify-item { |
|
|
290 |
font-size: 0.95em; |
|
|
291 |
} |
|
|
292 |
|
|
|
293 |
</style> |
|
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
</head> |
|
|
298 |
|
|
|
299 |
<body> |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
<div class="container-fluid main-container"> |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
<!-- setup 3col/9col grid for toc_float and main content --> |
|
|
306 |
<div class="row"> |
|
|
307 |
<div class="col-xs-12 col-sm-4 col-md-3"> |
|
|
308 |
<div id="TOC" class="tocify"> |
|
|
309 |
</div> |
|
|
310 |
</div> |
|
|
311 |
|
|
|
312 |
<div class="toc-content col-xs-12 col-sm-8 col-md-9"> |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
|
317 |
<div class="navbar navbar-default navbar-fixed-top" role="navigation"> |
|
|
318 |
<div class="container"> |
|
|
319 |
<div class="navbar-header"> |
|
|
320 |
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar"> |
|
|
321 |
<span class="icon-bar"></span> |
|
|
322 |
<span class="icon-bar"></span> |
|
|
323 |
<span class="icon-bar"></span> |
|
|
324 |
</button> |
|
|
325 |
<a class="navbar-brand" href="index.html">VoltRon</a> |
|
|
326 |
</div> |
|
|
327 |
<div id="navbar" class="navbar-collapse collapse"> |
|
|
328 |
<ul class="nav navbar-nav"> |
|
|
329 |
<li> |
|
|
330 |
<a href="tutorials.html">Explore</a> |
|
|
331 |
</li> |
|
|
332 |
<li class="dropdown"> |
|
|
333 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
334 |
Vignette |
|
|
335 |
|
|
|
336 |
<span class="caret"></span> |
|
|
337 |
</a> |
|
|
338 |
<ul class="dropdown-menu" role="menu"> |
|
|
339 |
<li class="dropdown-submenu"> |
|
|
340 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Spatial Data Integration</a> |
|
|
341 |
<ul class="dropdown-menu" role="menu"> |
|
|
342 |
<li> |
|
|
343 |
<a href="registration.html">Spatial Data Alignment</a> |
|
|
344 |
</li> |
|
|
345 |
<li> |
|
|
346 |
<a href="multiomic.html">Multi-omic Integration</a> |
|
|
347 |
</li> |
|
|
348 |
<li> |
|
|
349 |
<a href="nicheclustering.html">Niche Clustering</a> |
|
|
350 |
</li> |
|
|
351 |
</ul> |
|
|
352 |
</li> |
|
|
353 |
<li class="dropdown-submenu"> |
|
|
354 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Downstream Analysis</a> |
|
|
355 |
<ul class="dropdown-menu" role="menu"> |
|
|
356 |
<li> |
|
|
357 |
<a href="roianalysis.html">ROI Analysis</a> |
|
|
358 |
</li> |
|
|
359 |
<li> |
|
|
360 |
<a href="spotanalysis.html">Cell/Spot Analysis</a> |
|
|
361 |
</li> |
|
|
362 |
<li> |
|
|
363 |
<a href="moleculeanalysis.html">Molecule Analysis</a> |
|
|
364 |
</li> |
|
|
365 |
<li> |
|
|
366 |
<a href="pixelanalysis.html">Pixels (Image Only) Analysis</a> |
|
|
367 |
</li> |
|
|
368 |
</ul> |
|
|
369 |
</li> |
|
|
370 |
<li class="dropdown-submenu"> |
|
|
371 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Utilities</a> |
|
|
372 |
<ul class="dropdown-menu" role="menu"> |
|
|
373 |
<li> |
|
|
374 |
<a href="interactive.html">Interactive Utilities</a> |
|
|
375 |
</li> |
|
|
376 |
<li> |
|
|
377 |
<a href="importingdata.html">Importing Spatial Data</a> |
|
|
378 |
</li> |
|
|
379 |
<li> |
|
|
380 |
<a href="voltronobjects.html">Working with VoltRon Objects</a> |
|
|
381 |
</li> |
|
|
382 |
<li> |
|
|
383 |
<a href="conversion.html">Converting VoltRon Objects</a> |
|
|
384 |
</li> |
|
|
385 |
<li> |
|
|
386 |
<a href="ondisk.html">OnDisk-based Analysis Utilities</a> |
|
|
387 |
</li> |
|
|
388 |
</ul> |
|
|
389 |
</li> |
|
|
390 |
</ul> |
|
|
391 |
</li> |
|
|
392 |
</ul> |
|
|
393 |
<ul class="nav navbar-nav navbar-right"> |
|
|
394 |
<li class="dropdown"> |
|
|
395 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
396 |
<span class="fa fa-envelope-o"></span> |
|
|
397 |
|
|
|
398 |
Contact |
|
|
399 |
|
|
|
400 |
<span class="caret"></span> |
|
|
401 |
</a> |
|
|
402 |
<ul class="dropdown-menu" role="menu"> |
|
|
403 |
<li> |
|
|
404 |
<a href="https://bioinformatics.mdc-berlin.de">Altuna Lab/BIMSB Bioinfo</a> |
|
|
405 |
</li> |
|
|
406 |
<li> |
|
|
407 |
<a href="https://www.mdc-berlin.de/landthaler">Landthaler Lab/BIMSB</a> |
|
|
408 |
</li> |
|
|
409 |
</ul> |
|
|
410 |
</li> |
|
|
411 |
<li class="dropdown"> |
|
|
412 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
413 |
<span class="fa fa-github"></span> |
|
|
414 |
|
|
|
415 |
GitHub |
|
|
416 |
|
|
|
417 |
<span class="caret"></span> |
|
|
418 |
</a> |
|
|
419 |
<ul class="dropdown-menu" role="menu"> |
|
|
420 |
<li> |
|
|
421 |
<a href="https://github.com/BIMSBbioinfo/VoltRon">VoltRon</a> |
|
|
422 |
</li> |
|
|
423 |
<li> |
|
|
424 |
<a href="https://github.com/BIMSBbioinfo">BIMSB Bioinfo</a> |
|
|
425 |
</li> |
|
|
426 |
</ul> |
|
|
427 |
</li> |
|
|
428 |
</ul> |
|
|
429 |
</div><!--/.nav-collapse --> |
|
|
430 |
</div><!--/.container --> |
|
|
431 |
</div><!--/.navbar --> |
|
|
432 |
|
|
|
433 |
<div id="header"> |
|
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
|
437 |
<h1 class="title toc-ignore">Image Registration</h1> |
|
|
438 |
|
|
|
439 |
</div> |
|
|
440 |
|
|
|
441 |
|
|
|
442 |
<style> |
|
|
443 |
.title{ |
|
|
444 |
display: none; |
|
|
445 |
} |
|
|
446 |
body { |
|
|
447 |
text-align: justify |
|
|
448 |
} |
|
|
449 |
.center { |
|
|
450 |
display: block; |
|
|
451 |
margin-left: auto; |
|
|
452 |
margin-right: auto; |
|
|
453 |
} |
|
|
454 |
</style> |
|
|
455 |
<style type="text/css"> |
|
|
456 |
.watch-out { |
|
|
457 |
color: black; |
|
|
458 |
} |
|
|
459 |
</style> |
|
|
460 |
<p><br></p> |
|
|
461 |
<div id="spatial-data-alignment" class="section level1"> |
|
|
462 |
<h1>Spatial Data Alignment</h1> |
|
|
463 |
<p>Spatial genomic technologies often generate diverse images and |
|
|
464 |
spatial readouts, even though the tissue slices are from adjacent |
|
|
465 |
sections of a single tissue block. Hence, the alignment of images and |
|
|
466 |
spatial coordinates across tissue sections are of utmost importance to |
|
|
467 |
dissect the correct spatial closeness across these sections.</p> |
|
|
468 |
<p>VoltRon allows users to <strong>align spatial omics datasets of these |
|
|
469 |
serial sections</strong> for data transfer and 3 dimensional stack |
|
|
470 |
alignment. The order of the tissue/sample slices should be provided by |
|
|
471 |
the user. VoltRon provides a fully embedded <strong>shiny |
|
|
472 |
application</strong> to either automatically or manually align images. |
|
|
473 |
The automatic alignment is achieved with the <strong>OpenCV</strong>’s |
|
|
474 |
C++ library fully embedded in the VoltRon package.</p> |
|
|
475 |
<table> |
|
|
476 |
<tbody> |
|
|
477 |
<tr style="vertical-align: center"> |
|
|
478 |
<td style="width:43%; vertical-align: center"> |
|
|
479 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/manualregistration.png" class="center"> |
|
|
480 |
</td> |
|
|
481 |
<td style="width:43%; vertical-align: center"> |
|
|
482 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/autoregistration.png" class="center"> |
|
|
483 |
</td> |
|
|
484 |
</tr> |
|
|
485 |
</tbody> |
|
|
486 |
</table> |
|
|
487 |
<p><br></p> |
|
|
488 |
<div id="alignment-of-xenium-and-visium" class="section level2"> |
|
|
489 |
<h2>Alignment of Xenium and Visium</h2> |
|
|
490 |
<p>In this use case, we will align <strong>immunofluorescence |
|
|
491 |
(IF)</strong> and <strong>H&E images</strong> of the <strong>Xenium |
|
|
492 |
In Situ</strong> and <strong>Visium CytAssist</strong> platforms |
|
|
493 |
readouts. Three tissue sections are derived from a single |
|
|
494 |
formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue block. A 5 |
|
|
495 |
<span class="math inline">\(\mu\)</span>m section was taken for Visium |
|
|
496 |
CytAssist and two replicate 5 <span class="math inline">\(\mu\)</span>m |
|
|
497 |
sections were taken for the Xenium replicates. More information on the |
|
|
498 |
spatial datasets and the study can be also be found on the <a |
|
|
499 |
href="https://www.biorxiv.org/content/10.1101/2022.10.06.510405v1">BioArxiv |
|
|
500 |
preprint</a>.</p> |
|
|
501 |
<p>You can download the Xenium and Visium readouts from the <a |
|
|
502 |
href="https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast">10x |
|
|
503 |
Genomics website</a> (specifically, import <strong>In Situ Replicate 1/2 |
|
|
504 |
and Visium Spatial</strong>). Alternatively, you can <strong>download a |
|
|
505 |
zipped collection of three Visium and Xenium readouts</strong> from <a |
|
|
506 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/SpatialDataAlignment/Xenium_vs_Visium/10X_Xenium_Visium.zip">here</a>.</p> |
|
|
507 |
<p>VoltRon includes built-in functions for converting readouts from both |
|
|
508 |
Xenium and Visium platforms into VoltRon objects. We will import both |
|
|
509 |
Xenium replicates alongside with the Visium CytAssist data so that we |
|
|
510 |
can register images of these assays and merge them into one VoltRon |
|
|
511 |
object.</p> |
|
|
512 |
<pre class="r watch-out"><code>library(VoltRon) |
|
|
513 |
Xen_R1 <- importXenium("Xenium_R1/outs", sample_name = "XeniumR1") |
|
|
514 |
Xen_R2 <- importXenium("Xenium_R2/outs", sample_name = "XeniumR2") |
|
|
515 |
Vis <- importVisium("Visium/", sample_name = "VisiumR1")</code></pre> |
|
|
516 |
<p>Before moving on to image alignment, we can inspect both Xenium and |
|
|
517 |
Visium images. We use the <strong>vrImages</strong> function to call and |
|
|
518 |
visualize reference images of all VoltRon objects.</p> |
|
|
519 |
<pre class="r watch-out"><code>vrImages(Xen_R1) |
|
|
520 |
vrImages(Xen_R2) |
|
|
521 |
vrImages(Vis)</code></pre> |
|
|
522 |
<table> |
|
|
523 |
<tbody> |
|
|
524 |
<tr style="vertical-align: center"> |
|
|
525 |
<td style="width:33%; vertical-align: center"> |
|
|
526 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/xeniumr1.png" class="center"> |
|
|
527 |
</td> |
|
|
528 |
<td style="width:33%; vertical-align: center"> |
|
|
529 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/xeniumr2.png" class="center"> |
|
|
530 |
</td> |
|
|
531 |
<td style="width:33%; vertical-align: center"> |
|
|
532 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/visium.png" class="center"> |
|
|
533 |
</td> |
|
|
534 |
</tr> |
|
|
535 |
</tbody> |
|
|
536 |
</table> |
|
|
537 |
<p><br></p> |
|
|
538 |
<p>Although images of the first Xenium replicate and the Visium assay |
|
|
539 |
are workable, we have to adjust the brightness of the second Xenium |
|
|
540 |
replicate before image alignment. You can use |
|
|
541 |
<strong>modulateImage</strong> function to change the brightness and` |
|
|
542 |
saturation of the reference image of this VoltRon object. This |
|
|
543 |
functionality is optional for VoltRon objects and should be used when |
|
|
544 |
images require further adjustments.</p> |
|
|
545 |
<pre class="r watch-out"><code>Xen_R2 <- modulateImage(Xen_R2, brightness = 800) |
|
|
546 |
vrImages(Xen_R2)</code></pre> |
|
|
547 |
<p><img width="40%" height="40%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/xeniumr2_new.png" class="center"></p> |
|
|
548 |
<p><br></p> |
|
|
549 |
<div id="automated-image-alignment" class="section level3"> |
|
|
550 |
<h3>Automated Image Alignment</h3> |
|
|
551 |
<p>In order to achieve data transfer and integration across these two |
|
|
552 |
modalities, we need to first make sure that spatial coordinates of these |
|
|
553 |
three datasets are perfectly aligned. To this end, we will make use of |
|
|
554 |
the <strong>registerSpatialData</strong> function which calls a |
|
|
555 |
<strong>shiny app</strong> embedded into VoltRon. The function takes a |
|
|
556 |
single list as an input where the order of VoltRon objects in the list |
|
|
557 |
should be the same as the <strong>order of serial sections</strong>.</p> |
|
|
558 |
<p>We will make use of the <strong>registerSpatialData</strong> function |
|
|
559 |
to <strong>automatically register two Xenium assays onto the Visium |
|
|
560 |
assay</strong>. The Visium CytAssist image (or the <strong>image on the |
|
|
561 |
center</strong> of the list) would be taken as the image of reference, |
|
|
562 |
and hence all other images (or spatial datasets) are to be aligned to |
|
|
563 |
the Visium data. Then, registerSpatialData will return a list of VoltRon |
|
|
564 |
objects whose assays include both the original and registered versions |
|
|
565 |
of spatial coordinates. The shiny app will provide <strong>two |
|
|
566 |
images</strong> for this task:</p> |
|
|
567 |
<ul> |
|
|
568 |
<li>An image that shows the matched points across two images, and</li> |
|
|
569 |
<li>A slideshow with of the reference and registered images that |
|
|
570 |
demonstrates the alignment accuracy.</li> |
|
|
571 |
</ul> |
|
|
572 |
<p>We will select <strong>FLANN</strong> method for automated alignment |
|
|
573 |
which incorporates the <strong>SIFT</strong> method for automated |
|
|
574 |
keypoints selection and utilizes the <strong>Fast library for |
|
|
575 |
Approximate Nearest Neighbors (FLANN) algorithm</strong> for matching |
|
|
576 |
keypoints. <strong>NOTE:</strong> For better alignment performance, |
|
|
577 |
users can incorporate image manipulation tools above each image and sync |
|
|
578 |
images into the same orientation by rotating, flipping (horizontally and |
|
|
579 |
vertically) and negating these images. We always negate DAPI images to |
|
|
580 |
align them onto H&E images.</p> |
|
|
581 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2))</code></pre> |
|
|
582 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/XeniumVisiumRegistration_FLANN.gif" class="center"></p> |
|
|
583 |
<p><br></p> |
|
|
584 |
<p>You can save and use the same parameters later, and reproduce the |
|
|
585 |
alignment without choosing parameters the second time.</p> |
|
|
586 |
<pre class="r watch-out"><code>mapping_parameters <- xen_reg$mapping_parameters |
|
|
587 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
588 |
mapping_parameters = mapping_parameters)</code></pre> |
|
|
589 |
<p>You can find a presaved set of parameters <a |
|
|
590 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/SpatialDataAlignment/Xenium_vs_Visium/mapping_parameters.rds">here</a>.</p> |
|
|
591 |
<pre class="r watch-out"><code>mapping_parameters <- readRDS("mapping_parameters.rds") |
|
|
592 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
593 |
mapping_parameters = mapping_parameters)</code></pre> |
|
|
594 |
<p>If the pre-saved parameters are available, the registration can also |
|
|
595 |
be performed without using the shiny app. By using <strong>interactive = |
|
|
596 |
FALSE</strong>, we can register images and VoltRon objects directly.</p> |
|
|
597 |
<pre class="r watch-out"><code>mapping_parameters <- xen_reg$mapping_parameters |
|
|
598 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
599 |
mapping_parameters = mapping_parameters, |
|
|
600 |
interactive = FALSE)</code></pre> |
|
|
601 |
<p>In case there are only two images, <strong>the first image will be |
|
|
602 |
taken as the image of reference</strong>. Hence, in order to align the |
|
|
603 |
first Xenium Replicate to the Visium dataset, we can create a list of |
|
|
604 |
two VoltRon objects as given below.</p> |
|
|
605 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(Vis, Xen_R2))</code></pre> |
|
|
606 |
<p><br></p> |
|
|
607 |
</div> |
|
|
608 |
<div id="manual-image-alignment" class="section level3"> |
|
|
609 |
<h3>Manual Image Alignment</h3> |
|
|
610 |
<p>Given the diverse types of tissue sections and their complex |
|
|
611 |
morphology, we need an alternative alignment strategy if automated |
|
|
612 |
registration may fail. VoltRon allows <strong>manually choosing |
|
|
613 |
keypoints (or landmarks)</strong> on images that are locations on the |
|
|
614 |
tissue with structural/morphological similarity. Similar to the |
|
|
615 |
automated mode, <strong>the image on the center</strong> will be taken |
|
|
616 |
as reference and the users will be able to observe the quality of the |
|
|
617 |
registration and remove/reselect keypoints as they see fit.</p> |
|
|
618 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2))</code></pre> |
|
|
619 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/XeniumVisiumRegistration.gif" class="center"></p> |
|
|
620 |
<p><br></p> |
|
|
621 |
<p>You can save and use the same keypoints later, and reproduce the |
|
|
622 |
manual alignment without choosing keypoints for the second time.</p> |
|
|
623 |
<pre class="r watch-out"><code>mapping_parameters <- xen_reg$mapping_parameters |
|
|
624 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
625 |
mapping_parameters = mapping_parameters)</code></pre> |
|
|
626 |
<p>You can find a presaved set of parameters with selected manual |
|
|
627 |
keypoints <a |
|
|
628 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/SpatialDataAlignment/Xenium_vs_Visium/mapping_parameters_manual.rds">here</a>.</p> |
|
|
629 |
<pre class="r watch-out"><code>mapping_parameters <- readRDS("mapping_parameters_manual.rds") |
|
|
630 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
631 |
mapping_parameters = mapping_parameters)</code></pre> |
|
|
632 |
<p>If the pre-saved keypoints are available with parameters, the |
|
|
633 |
registration can also be performed without using the shiny app. By using |
|
|
634 |
<strong>interactive = FALSE</strong>, we can register images and VoltRon |
|
|
635 |
objects directly.</p> |
|
|
636 |
<pre class="r watch-out"><code>mapping_parameters <- xen_reg$mapping_parameters |
|
|
637 |
xen_reg <- registerSpatialData(object_list = list(Xen_R1, Vis, Xen_R2), |
|
|
638 |
mapping_parameters = mapping_parameters, |
|
|
639 |
interactive = FALSE)</code></pre> |
|
|
640 |
<p>In case there are only two images, <strong>the first image will be |
|
|
641 |
taken as the image of reference</strong>. Hence, in order to align the |
|
|
642 |
first Xenium Replicate to the Visium dataset. We can create a list of |
|
|
643 |
two VoltRon objects as given below.</p> |
|
|
644 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(Vis, Xen_R2))</code></pre> |
|
|
645 |
<p><br></p> |
|
|
646 |
</div> |
|
|
647 |
<div id="combine-voltron-object" class="section level3"> |
|
|
648 |
<h3>Combine VoltRon object</h3> |
|
|
649 |
<p>Now that the VoltRon objects of Xenium and Visium datasets are |
|
|
650 |
accurately aligned, we can combine these objects to create <strong>one |
|
|
651 |
VoltRon object with three layers</strong>. Since all sections are |
|
|
652 |
derived from the same tissue block, we want them to be associated with |
|
|
653 |
the same sample, hence we define the sample name as well. VoltRon will |
|
|
654 |
recognize that all layers are originated from the same sample/block, and |
|
|
655 |
choose the majority assay as the main assay.</p> |
|
|
656 |
<pre class="r watch-out"><code>merge_list <- xen_reg$registered_spat |
|
|
657 |
VRBlock <- merge(merge_list[[1]], merge_list[-1], samples = "10XBlock") |
|
|
658 |
VRBlock</code></pre> |
|
|
659 |
<pre><code>10XBlock: |
|
|
660 |
Layers: Section1 Section2 Section3 |
|
|
661 |
Assays: Xenium(Main) Visium |
|
|
662 |
Features: RNA(Main) </code></pre> |
|
|
663 |
<p>Here, we can quickly check the change in spatial coordinate systems |
|
|
664 |
in the new tissue block. The <code>registerSpatialData</code> function |
|
|
665 |
syncronizes the coordinate systems of all VoltRon objects in the list |
|
|
666 |
before merging. Both Xenium sections have now two coordinate system |
|
|
667 |
where the registered system <strong>main_reg</strong> is the default |
|
|
668 |
one.</p> |
|
|
669 |
<pre class="r watch-out"><code>vrSpatialNames(VRBlock, assay = "all")</code></pre> |
|
|
670 |
<pre><code> Assay Layer Sample Spatial Main |
|
|
671 |
Assay1 Xenium Section1 10XBlock main,main_reg main_reg |
|
|
672 |
Assay2 Visium Section2 10XBlock main main |
|
|
673 |
Assay3 Xenium Section3 10XBlock main,main_reg main_reg</code></pre> |
|
|
674 |
<p><br></p> |
|
|
675 |
</div> |
|
|
676 |
<div id="datalabel-transfer-across-layers" class="section level3"> |
|
|
677 |
<h3>Data/Label Transfer Across Layers</h3> |
|
|
678 |
<p>The combined VoltRon object of Visium and Xenium datasets can be used |
|
|
679 |
to transfer information across layers and assays. This is accomplished |
|
|
680 |
by aggregating and summarizing, for example, gene counts of cells from |
|
|
681 |
the Xenium assay aligned to Visium spots. Either labels or cell types |
|
|
682 |
can be summarized to generate:</p> |
|
|
683 |
<ul> |
|
|
684 |
<li>pseudo cell type abundance assays or</li> |
|
|
685 |
<li>pseudo gene expression assays.</li> |
|
|
686 |
</ul> |
|
|
687 |
<p><br></p> |
|
|
688 |
<div id="data-transfer-cells-spots" class="section level4"> |
|
|
689 |
<h4>Data Transfer (Cells->Spots)</h4> |
|
|
690 |
<p>We must first determine the names of the assays where labels are |
|
|
691 |
transfered <strong>from</strong> one <strong>to</strong> the other. For |
|
|
692 |
the sake of this tutorial, we can select Assay1 of <strong>Xenium as the |
|
|
693 |
source</strong> assay and the Assay2 of <strong>Visium as the |
|
|
694 |
destination</strong> assay.</p> |
|
|
695 |
<pre class="r watch-out"><code>SampleMetadata(VRBlock)</code></pre> |
|
|
696 |
<pre><code> Assay Layer Sample |
|
|
697 |
Assay1 Xenium Section1 10XBlock |
|
|
698 |
Assay2 Visium Section2 10XBlock |
|
|
699 |
Assay3 Xenium Section3 10XBlock</code></pre> |
|
|
700 |
<p>The <strong>transferData</strong> function detects the types of both |
|
|
701 |
the <strong>source (from)</strong> and the <strong>destination |
|
|
702 |
(to)</strong> assays and determines the how the data should be |
|
|
703 |
transfered. We can first transfer data from the Xenium assay to the |
|
|
704 |
Visium assay (hence <strong>Cells -> Spots</strong>), the raw count |
|
|
705 |
data of each cell in the source Xenium assay will be aggregated into |
|
|
706 |
spots in a newly create pseudo Visium assay. The new assay with |
|
|
707 |
aggregated counts will be named <strong>Visium_pseudo</strong>.</p> |
|
|
708 |
<pre class="r watch-out"><code>VRBlock <- transferData(VRBlock, from = "Assay1", to = "Assay2")</code></pre> |
|
|
709 |
<p>VoltRon supports multiple feature type within each assay. Now, the |
|
|
710 |
Visium assay includes two spot-type features:</p> |
|
|
711 |
<ul> |
|
|
712 |
<li>the original Visium spot feature counts,</li> |
|
|
713 |
<li>a pseudo Visium feature count matrix with aggregated Xenium raw |
|
|
714 |
counts.</li> |
|
|
715 |
</ul> |
|
|
716 |
<pre class="r watch-out"><code>vrMainAssay(VRBlock) <- "Visium" |
|
|
717 |
VRBlock</code></pre> |
|
|
718 |
<pre><code>VoltRon Object |
|
|
719 |
10XBlock: |
|
|
720 |
Layers: Section1 Section2 Section3 |
|
|
721 |
Assays: Visium(Main) Xenium |
|
|
722 |
Features: RNA(Main) RNA_pseudo </code></pre> |
|
|
723 |
<p>We can now visualize both the original and aggregated counts of a |
|
|
724 |
gene, such as ERBB2 and ESR1 that marks ductal carcinoma in situ (DCIS) |
|
|
725 |
regions, to validate the correlation of gene signatures across adjacent |
|
|
726 |
tissue sections, and to validate the accuracy of the automated image |
|
|
727 |
alignment. Here, PGR is also expressed at a small DCIS region found on |
|
|
728 |
adipocyte niche of the tissue.</p> |
|
|
729 |
<pre class="r watch-out"><code>library(patchwork) |
|
|
730 |
vrMainFeatureType(VRBlock, assay = "Visium") <- "RNA" |
|
|
731 |
g1 <- vrSpatialFeaturePlot(VRBlock, |
|
|
732 |
features = c("ERBB2", "ESR1", "PGR"), crop = FALSE, |
|
|
733 |
norm = FALSE, ncol = 3) |
|
|
734 |
vrMainFeatureType(VRBlock, assay = "Visium") <- "RNA_pseudo" |
|
|
735 |
g2 <- vrSpatialFeaturePlot(VRBlock, |
|
|
736 |
features = c("ERBB2", "ESR1", "PGR"), crop = FALSE, |
|
|
737 |
norm = FALSE, ncol = 3) |
|
|
738 |
g1 / g2</code></pre> |
|
|
739 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_TACSTD2.png" class="center"></p> |
|
|
740 |
</div> |
|
|
741 |
<div id="data-transfer-spots-cells" class="section level4"> |
|
|
742 |
<h4>Data Transfer (Spots->Cells)</h4> |
|
|
743 |
<p>A similar transfer can be achieved on the opposite direction. We can |
|
|
744 |
select Assay2 of <strong>Visium as the source</strong> assay and Assay1 |
|
|
745 |
of <strong>Xenium as the destination</strong>, thus we can transfer |
|
|
746 |
whole transcriptome counts of the Visium assays to Xenium to create new |
|
|
747 |
feature sets for Xenium data with more features originally available in |
|
|
748 |
the Xenium panel.</p> |
|
|
749 |
<pre class="r watch-out"><code>vrMainFeatureType(VRBlock, assay = "Visium") <- "RNA" |
|
|
750 |
VRBlock <- transferData(VRBlock, from = "Assay2", to = "Assay1")</code></pre> |
|
|
751 |
<p>We now set the main feature set of the Xenium assays.</p> |
|
|
752 |
<pre class="r watch-out"><code>vrMainFeatureType(VRBlock, assay = "Xenium") <- "RNA_pseudo" |
|
|
753 |
vrMainFeatureType(VRBlock, assay = "all")</code></pre> |
|
|
754 |
<pre><code> Assay Feature |
|
|
755 |
1 Assay1 RNA_pseudo |
|
|
756 |
2 Assay2 RNA |
|
|
757 |
3 Assay3 RNA</code></pre> |
|
|
758 |
<pre class="r watch-out"><code>library(patchwork) |
|
|
759 |
g1 <- vrSpatialFeaturePlot(VRBlock, |
|
|
760 |
assay = "Assay1", features = c("ERBB2", "ESR1", "PGR"), |
|
|
761 |
crop = TRUE, norm = FALSE, alpha = 1, n.tile = 300, ncol = 3) |
|
|
762 |
g2 <- vrSpatialFeaturePlot(VRBlock, |
|
|
763 |
assay = "Assay2", features = c("ERBB2", "ESR1", "PGR"), |
|
|
764 |
crop = TRUE, norm = FALSE, alpha = 1, ncol = 3) |
|
|
765 |
g1 / g2</code></pre> |
|
|
766 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_spot2cell.png" class="center"></p> |
|
|
767 |
</div> |
|
|
768 |
<div id="label-transfer-cells-spots" class="section level4"> |
|
|
769 |
<h4>Label Transfer (Cells->Spots)</h4> |
|
|
770 |
<p>The <strong>transferData</strong> function can also transfer |
|
|
771 |
<strong>metadata features</strong> across layers and assays. In this |
|
|
772 |
case, we will transfer cell type labels that were trained on the Xenium |
|
|
773 |
sections onto the Visium sections. We will use the cluster labels |
|
|
774 |
generated at the end of the Xenium analysis section of workflow from <a |
|
|
775 |
href="spotanalysis.html">Cell/Spot Analysis</a>. You can download the |
|
|
776 |
VoltRon object with clustered and annotated Xenium cells along with the |
|
|
777 |
Visium assay from <a |
|
|
778 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/SpatialDataAlignment/Xenium_vs_Visium/VRBlock_data_clustered.rds">here</a>.</p> |
|
|
779 |
<pre class="r watch-out"><code>VRBlock <- readRDS("VRBlock_data_clustered.rds") |
|
|
780 |
vrSpatialPlot(VRBlock, assay = "Xenium", group.by = "CellType", pt.size = 0.4)</code></pre> |
|
|
781 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/cellspot_spatial_xenium_annotated.png" class="center"></p> |
|
|
782 |
<p>Here, we can see that both Xenium layers are clustered and annotated |
|
|
783 |
where we can use these cell annotations and transfer them to the Visium |
|
|
784 |
assay to create an assay of <strong>estimated cell type |
|
|
785 |
abundances</strong>. If the features argument is specified, and if its a |
|
|
786 |
single metadata feature with, e.g. cell types, then the each spot at the |
|
|
787 |
new pseudo Visium will be collection of abundances of the categories |
|
|
788 |
within that metadata feature.</p> |
|
|
789 |
<pre class="r watch-out"><code>VRBlock <- transferData(VRBlock, from = "Assay1", to = "Assay2", features = "CellType", |
|
|
790 |
new_assay_name = "Visium_CellType") |
|
|
791 |
VRBlock</code></pre> |
|
|
792 |
<pre><code>VoltRon Object |
|
|
793 |
10XBlock: |
|
|
794 |
Layers: Section1 Section2 Section3 |
|
|
795 |
Assays: Visium(Main) Xenium |
|
|
796 |
Features: RNA_pseudo(Main) RNA Visium_CellType </code></pre> |
|
|
797 |
<p>By visualizing the transferred labels on the Visium spots, we can see |
|
|
798 |
abundance of some DCIS and invasive tumor subtypes.</p> |
|
|
799 |
<pre class="r watch-out"><code>vrMainFeatureType(VRBlock) <- "Visium_CellType" |
|
|
800 |
vrSpatialFeaturePlot(VRBlock, assay = "Visium", |
|
|
801 |
features = c("IT_1","DCIS_2"), |
|
|
802 |
crop = TRUE, alpha = 1, ncol = 3)</code></pre> |
|
|
803 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_CellType.png" class="center"></p> |
|
|
804 |
<p><br></p> |
|
|
805 |
</div> |
|
|
806 |
<div id="label-transfer-rois-" class="section level4"> |
|
|
807 |
<h4>Label Transfer (ROIs->…)</h4> |
|
|
808 |
<p>VoltRon allows users to annotate regions of interests (ROIs) in a |
|
|
809 |
given assay and transfer the annotations to these ROIs across other |
|
|
810 |
assays within the same tissue block. Let us annotate two specific tumor |
|
|
811 |
regions in the Visium section. In the process, a new assay called |
|
|
812 |
<strong>ROIAnnotation</strong> will be added to the VoltRon object.</p> |
|
|
813 |
<pre class="r watch-out"><code>VRBlock <- annotateSpatialData(VRBlock, assay = "Visium", |
|
|
814 |
label = "annotation", use.image.only = TRUE)</code></pre> |
|
|
815 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_ROIAnnotation.png" class="center"></p> |
|
|
816 |
<p><br></p> |
|
|
817 |
<p>You can observe the changes in the object and check the assay ID of |
|
|
818 |
this new ROI type assay using <code>SampleMetadata</code> function.</p> |
|
|
819 |
<pre class="r watch-out"><code>VRBlock</code></pre> |
|
|
820 |
<pre><code>VoltRon Object |
|
|
821 |
10XBlock: |
|
|
822 |
Layers: Section1 Section2 Section3 |
|
|
823 |
Assays: Xenium(Main) Visium ROIAnnotation |
|
|
824 |
Features: RNA(Main) </code></pre> |
|
|
825 |
<pre class="r watch-out"><code>SampleMetadata(VRBlock)</code></pre> |
|
|
826 |
<pre><code> Assay Layer Sample |
|
|
827 |
Assay1 Xenium Section1 10XBlock |
|
|
828 |
Assay2 Visium Section2 10XBlock |
|
|
829 |
Assay3 Xenium Section3 10XBlock |
|
|
830 |
Assay4 ROIAnnotation Section2 10XBlock</code></pre> |
|
|
831 |
<p>The metadata of the ROI assay will include the annotation of the ROIs |
|
|
832 |
as well.</p> |
|
|
833 |
<pre class="r watch-out"><code>Metadata(VRBlock, assay = "ROIAnnotation")</code></pre> |
|
|
834 |
<pre><code> Assay Layer Sample annotation |
|
|
835 |
InvasiveTumor_Assay4 ROIAnnotation Section2 10XBlock InvasiveTumor |
|
|
836 |
DuctalCarcinoma_Assay4 ROIAnnotation Section2 10XBlock DuctalCarcinoma</code></pre> |
|
|
837 |
<p>Now we can transfer the ROI labels from the |
|
|
838 |
<strong>annotation</strong> metadata column and define the same metadata |
|
|
839 |
column in the remaining assays.</p> |
|
|
840 |
<pre class="r watch-out"><code>VRBlock <- transferData(object = VRBlock, from = "Assay4", to = "Assay1", |
|
|
841 |
features = "annotation") |
|
|
842 |
VRBlock <- transferData(object = VRBlock, from = "Assay4", to = "Assay3", |
|
|
843 |
features = "annotation")</code></pre> |
|
|
844 |
<p>Let us observe the changes across all assays.</p> |
|
|
845 |
<pre class="r watch-out"><code>vrSpatialPlot(VRBlock, group.by = "annotation", assay = "Xenium", crop = TRUE) |
|
|
846 |
vrSpatialPlot(VRBlock, group.by = "annotation", assay = "Visium", crop = TRUE)</code></pre> |
|
|
847 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_ROI_xenium.png" class="center"></p> |
|
|
848 |
<p><img width="50%" height="50%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_ROI_visium.png" class="center"></p> |
|
|
849 |
<p><br></p> |
|
|
850 |
<p>You can also use the <strong>addSpatialLayer</strong> function to |
|
|
851 |
overlay annotation segments to the spatial plot of the Xenium data.</p> |
|
|
852 |
<pre class="r watch-out"><code>vrSpatialPlot(VRBlock_new2, group.by = "CellType", assay = "Assay1", crop = TRUE) |> |
|
|
853 |
addSpatialLayer(VRBlock_new2, assay = "ROIAnnotation", group.by = "annotation", spatial = "main", alpha = 0.4)</code></pre> |
|
|
854 |
<p><img width="50%" height="50%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_ROI_xenium_overlay.png" class="center"></p> |
|
|
855 |
<p><br></p> |
|
|
856 |
</div> |
|
|
857 |
</div> |
|
|
858 |
</div> |
|
|
859 |
<div id="alignment-of-xenium-and-he" class="section level2"> |
|
|
860 |
<h2>Alignment of Xenium and H&E</h2> |
|
|
861 |
<p>In this use case, we will align <strong>immunofluorescence |
|
|
862 |
(IF)</strong> of the <strong>Xenium In Situ</strong> platform to an |
|
|
863 |
<strong>H&E images</strong> generated from the same sections as the |
|
|
864 |
Xenium. VoltRon provides built-in utilities to import images as spatial |
|
|
865 |
datasets where <strong>tiles</strong> are the spatial points. We will |
|
|
866 |
import both Xenium and H&E images into two separate VoltRon objects |
|
|
867 |
and overlay H&E images.</p> |
|
|
868 |
<p>You can download the Xenium readout and the H&E image of the same |
|
|
869 |
tissue section from the <a |
|
|
870 |
href="https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast">10x |
|
|
871 |
Genomics website</a> (specifically, import <strong>In Situ Replicate |
|
|
872 |
1</strong> and <strong>Supplemental: Post-Xenium H&E image |
|
|
873 |
(TIFF)</strong>).</p> |
|
|
874 |
<pre class="r watch-out"><code>library(VoltRon) |
|
|
875 |
|
|
|
876 |
# import Xenium |
|
|
877 |
Xen_R1 <- importXenium("Xenium_R1/outs", sample_name = "XeniumR1") |
|
|
878 |
|
|
|
879 |
# import H&E image and build a VoltRon object |
|
|
880 |
Xen_R1_image <- importImageData("Xenium_FFPE_Human_Breast_Cancer_Rep1_he_image.tif", |
|
|
881 |
sample_name = "XeniumR1image", |
|
|
882 |
channel_names = "H&E") |
|
|
883 |
Xen_R1_image</code></pre> |
|
|
884 |
<pre><code>VoltRon Object |
|
|
885 |
XeniumR1image: |
|
|
886 |
Layers: Section1 |
|
|
887 |
Assays: ImageData(Main) </code></pre> |
|
|
888 |
<p>Lets take a look at the image of the Xen_R1_image object</p> |
|
|
889 |
<pre class="r watch-out"><code>vrImages(Xen_R1_image)</code></pre> |
|
|
890 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/importdata_HE.png" class="center"></p> |
|
|
891 |
<p><br></p> |
|
|
892 |
<div id="automated-image-alignment-1" class="section level3"> |
|
|
893 |
<h3>Automated Image Alignment</h3> |
|
|
894 |
<p>We can use the <strong>registerSpatialData</strong> function to |
|
|
895 |
warp/align images across multiple VoltRon objects and define these |
|
|
896 |
aligned images additional channels of existing coordinate systems of |
|
|
897 |
assays in one of these VoltRon objects.</p> |
|
|
898 |
<p>First we align the H&E image to the DAPI image of the Xenium |
|
|
899 |
replicate. Similar to the first use case, we need to negate the DAPI |
|
|
900 |
image and change the alignment of the image to match it with the H&E |
|
|
901 |
image. We can also scale the resolution of the H&E image to |
|
|
902 |
9103.71x6768.63.</p> |
|
|
903 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(Xen_R1, Xen_R1_image))</code></pre> |
|
|
904 |
<p><img width="92%" height="92%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_HE_function.png" class="center"></p> |
|
|
905 |
<p><br></p> |
|
|
906 |
<p>Now we create a new channel for the existing coordinate system of the |
|
|
907 |
Xenium data. Here, the spatial key of the registered H&E image will |
|
|
908 |
be <strong>main_reg</strong>. We choose the destination of the |
|
|
909 |
registered image which is the first Assay of the Xenium data |
|
|
910 |
(i.e. <strong>Assay1</strong>). The original DAPI coordinate system, and |
|
|
911 |
we give a name for the new image/channel which is |
|
|
912 |
<strong>H&E</strong>.</p> |
|
|
913 |
<pre class="r watch-out"><code>Xen_R1_image_reg <- xen_reg$registered_spat[[2]] |
|
|
914 |
vrImages(Xen_R1[["Assay1"]], channel = "H&E") <- vrImages(Xenium_reg, name = "main_reg", channel = "H&E")</code></pre> |
|
|
915 |
<p>We can now observe the new channels (H&E) available for the |
|
|
916 |
Xenium assay using <strong>vrImageChannelNames</strong>.</p> |
|
|
917 |
<pre class="r watch-out"><code>vrImageChannelNames(Xen_R1)</code></pre> |
|
|
918 |
<pre><code> Assay Layer Sample Spatial Channels |
|
|
919 |
Assay1 GeoMx Section1 prolonged case 4 main scanimage,DNA,PanCK,CD45,Alpha Smooth Muscle Actin,H&E</code></pre> |
|
|
920 |
<p>We can call the registered H&E image of the Xenium data or later |
|
|
921 |
put the aligned H&E when calling <strong>vrSpatialPlot</strong> or |
|
|
922 |
<strong>vrSpatialFeaturePlot</strong>.</p> |
|
|
923 |
<pre class="r watch-out"><code>vrImages(Xen_R1, channel = "H&E", scale.perc = 5)</code></pre> |
|
|
924 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/registration_HE.png" class="center"></p> |
|
|
925 |
<p><br></p> |
|
|
926 |
</div> |
|
|
927 |
</div> |
|
|
928 |
<div id="alignment-of-visium-and-visium" class="section level2"> |
|
|
929 |
<h2>Alignment of Visium and Visium</h2> |
|
|
930 |
<p>In the next use case, we will align <strong>H&E images</strong> |
|
|
931 |
associated with Visium data generated from tissue block sections of |
|
|
932 |
<strong>adult humans with postmortem dorsolateral prefrontal cortex |
|
|
933 |
(DLPFC)</strong>. Two pairs of adjacent sections was obtained from the |
|
|
934 |
tissue block of the third donor. Each pair are composed of two 10 <span |
|
|
935 |
class="math inline">\(\mu\)</span>m serial tissue sections, and pairs |
|
|
936 |
are located 300 <span class="math inline">\(\mu\)</span>m apart from |
|
|
937 |
each other. Hence, we align each pair individually. The datasets can be |
|
|
938 |
downloaded from <a |
|
|
939 |
href="https://research.libd.org/spatialLIBD/">here</a>.</p> |
|
|
940 |
<pre class="r watch-out"><code>library(VoltRon) |
|
|
941 |
DLPFC_1 <- importVisium("DLPFC/151673", sample_name = "DLPFC_1") |
|
|
942 |
DLPFC_2 <- importVisium("DLPFC/151674", sample_name = "DLPFC_2") |
|
|
943 |
DLPFC_3 <- importVisium("DLPFC/151675", sample_name = "DLPFC_3") |
|
|
944 |
DLPFC_4 <- importVisium("DLPFC/151676", sample_name = "DLPFC_4")</code></pre> |
|
|
945 |
<p><br></p> |
|
|
946 |
<div id="automated-image-alignment-2" class="section level3"> |
|
|
947 |
<h3>Automated Image Alignment</h3> |
|
|
948 |
<p>We will again use the registerSpatialData function to |
|
|
949 |
<strong>automatically register two Visium assays (two H&E |
|
|
950 |
images)</strong>. This time, we will use the |
|
|
951 |
<strong>BRUTE-FORCE</strong> method for automated alignment which we |
|
|
952 |
found to be more accurate compared to FLANN when aligning two H&E |
|
|
953 |
images. The shiny app also provides two tuning parameters that used by |
|
|
954 |
the the BRUTE-FORCE workflow:</p> |
|
|
955 |
<ul> |
|
|
956 |
<li><strong># of Features</strong> option specifies the number of |
|
|
957 |
maximum image features spotted within each image which later be used to |
|
|
958 |
match to the other image.</li> |
|
|
959 |
<li><strong>Match %</strong> specifies the percentage of these features |
|
|
960 |
matching at max which in turn used to compute the |
|
|
961 |
registration/transformation matrix.</li> |
|
|
962 |
</ul> |
|
|
963 |
<p>We will use <strong>1000 features</strong> for this alignment, set |
|
|
964 |
<strong>Match %</strong> to 20% of the features to be matched across |
|
|
965 |
images. The quality of the alignment will be determined by the fine |
|
|
966 |
tuning of these parameters where users will immediately observe the |
|
|
967 |
alignment quality looking at the slideshow.</p> |
|
|
968 |
<pre class="r watch-out"><code>DLPFC_list <- list(DLPFC_1, DLPFC_2) |
|
|
969 |
reg1and2 <- registerSpatialData(object_list = DLPFC_list)</code></pre> |
|
|
970 |
<p><img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/VisiumDLFPCRegistration.gif" class="center"></p> |
|
|
971 |
<p><br></p> |
|
|
972 |
<p>We can now apply a similar alignment across the second pair of |
|
|
973 |
VoltRon objects. We will use <strong>800 features</strong> for this |
|
|
974 |
alignment, set <strong>Match %</strong> to 50% of the features to be |
|
|
975 |
matched across images.</p> |
|
|
976 |
<pre class="r watch-out"><code>DLPFC_list <- list(DLPFC_3, DLPFC_4) |
|
|
977 |
reg3and4 <- registerSpatialData(object_list = DLPFC_list)</code></pre> |
|
|
978 |
<p><br></p> |
|
|
979 |
</div> |
|
|
980 |
<div id="d-spot-clustering" class="section level3"> |
|
|
981 |
<h3>3D Spot Clustering</h3> |
|
|
982 |
<p>We can now combine all sections into one VoltRon object. There are |
|
|
983 |
two pairs of serial tissue sections, but both pairs (thus 4 sections) |
|
|
984 |
are from the same tissue block. Hence, we can combine these two lists |
|
|
985 |
into one list and merge VoltRon objects even though sections were |
|
|
986 |
aligned separately.</p> |
|
|
987 |
<pre class="r watch-out"><code>merge_list <- c(reg1and2$registered_spat, reg3and4$registered_spat) |
|
|
988 |
SRBlock <- merge(merge_list[[1]], merge_list[-1], samples = "DLPFC_Block") |
|
|
989 |
SRBlock</code></pre> |
|
|
990 |
<pre><code>VoltRon Object |
|
|
991 |
DLPFC_Block: |
|
|
992 |
Layers: Section1 Section2 Section3 Section4 |
|
|
993 |
Assays: Visium(Main) </code></pre> |
|
|
994 |
<p><br></p> |
|
|
995 |
<p>Aligning spots along the z dimension allows us to cluster these spots |
|
|
996 |
using both the gene expression similarities and spatial adjacency (both |
|
|
997 |
along the x-y direction and in the z direction). We first generate a |
|
|
998 |
spatial neighborhood graph and use this graph along with the gene |
|
|
999 |
expression neighborhood graph <strong>(under development)</strong>.</p> |
|
|
1000 |
</div> |
|
|
1001 |
</div> |
|
|
1002 |
</div> |
|
|
1003 |
|
|
|
1004 |
|
|
|
1005 |
|
|
|
1006 |
</div> |
|
|
1007 |
</div> |
|
|
1008 |
|
|
|
1009 |
</div> |
|
|
1010 |
|
|
|
1011 |
<script> |
|
|
1012 |
|
|
|
1013 |
// add bootstrap table styles to pandoc tables |
|
|
1014 |
function bootstrapStylePandocTables() { |
|
|
1015 |
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed'); |
|
|
1016 |
} |
|
|
1017 |
$(document).ready(function () { |
|
|
1018 |
bootstrapStylePandocTables(); |
|
|
1019 |
}); |
|
|
1020 |
|
|
|
1021 |
|
|
|
1022 |
</script> |
|
|
1023 |
|
|
|
1024 |
<!-- tabsets --> |
|
|
1025 |
|
|
|
1026 |
<script> |
|
|
1027 |
$(document).ready(function () { |
|
|
1028 |
window.buildTabsets("TOC"); |
|
|
1029 |
}); |
|
|
1030 |
|
|
|
1031 |
$(document).ready(function () { |
|
|
1032 |
$('.tabset-dropdown > .nav-tabs > li').click(function () { |
|
|
1033 |
$(this).parent().toggleClass('nav-tabs-open'); |
|
|
1034 |
}); |
|
|
1035 |
}); |
|
|
1036 |
</script> |
|
|
1037 |
|
|
|
1038 |
<!-- code folding --> |
|
|
1039 |
|
|
|
1040 |
<script> |
|
|
1041 |
$(document).ready(function () { |
|
|
1042 |
|
|
|
1043 |
// temporarily add toc-ignore selector to headers for the consistency with Pandoc |
|
|
1044 |
$('.unlisted.unnumbered').addClass('toc-ignore') |
|
|
1045 |
|
|
|
1046 |
// move toc-ignore selectors from section div to header |
|
|
1047 |
$('div.section.toc-ignore') |
|
|
1048 |
.removeClass('toc-ignore') |
|
|
1049 |
.children('h1,h2,h3,h4,h5').addClass('toc-ignore'); |
|
|
1050 |
|
|
|
1051 |
// establish options |
|
|
1052 |
var options = { |
|
|
1053 |
selectors: "h1,h2,h3,h4,h5", |
|
|
1054 |
theme: "bootstrap3", |
|
|
1055 |
context: '.toc-content', |
|
|
1056 |
hashGenerator: function (text) { |
|
|
1057 |
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_'); |
|
|
1058 |
}, |
|
|
1059 |
ignoreSelector: ".toc-ignore", |
|
|
1060 |
scrollTo: 0 |
|
|
1061 |
}; |
|
|
1062 |
options.showAndHide = false; |
|
|
1063 |
options.smoothScroll = true; |
|
|
1064 |
|
|
|
1065 |
// tocify |
|
|
1066 |
var toc = $("#TOC").tocify(options).data("toc-tocify"); |
|
|
1067 |
}); |
|
|
1068 |
</script> |
|
|
1069 |
|
|
|
1070 |
<!-- dynamically load mathjax for compatibility with self-contained --> |
|
|
1071 |
<script> |
|
|
1072 |
(function () { |
|
|
1073 |
var script = document.createElement("script"); |
|
|
1074 |
script.type = "text/javascript"; |
|
|
1075 |
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; |
|
|
1076 |
document.getElementsByTagName("head")[0].appendChild(script); |
|
|
1077 |
})(); |
|
|
1078 |
</script> |
|
|
1079 |
|
|
|
1080 |
</body> |
|
|
1081 |
</html> |