Diff of /docs/ondisk.Rmd [000000] .. [413088]

Switch to side-by-side view

--- a
+++ b/docs/ondisk.Rmd
@@ -0,0 +1,200 @@
+---
+title: "ondisk"
+output: 
+  html_document:
+    toc: true
+    toc_float:
+      collapsed: false
+      smooth_scroll: false
+---
+
+<style>
+.title{
+  display: none;
+}
+body {
+  text-align: justify
+}
+.center {
+  display: block;
+  margin-left: auto;
+  margin-right: auto;
+}
+</style>
+
+```{css, echo=FALSE}
+.watch-out {
+  color: black;
+}
+```
+
+```{r setup, include=FALSE}
+# use rmarkdown::render_site(envir = knitr::knit_global())
+knitr::opts_chunk$set(highlight = TRUE, echo = TRUE)
+```
+
+<br>
+
+## Import VisiumHD Data
+
+We first have to download some packages that are necessary to import datasets from `.parquet` and `.h5` files provided by the VisiumHD readouts.
+
+```{r class.source="watch-out", eval = FALSE}
+install.packages("arrow")
+BiocManager::install("rhdf5")
+library(arrow)
+library(rhdf5)
+```
+
+We use the **importVisiumHD** function to start analyzing the data. The data has 393401 spots which we will use OnDisk-backed methods to efficiently manipulate, analyze and visualize these spots.
+
+The VisiumHD readouts provide multiple bin sizes which are aggregated versions of the original 2$\mu$m $x$ 2$\mu$m capture spots. The default bin sizes are **(i)** 2$\mu$m $x$ 2$\mu$m, **(ii)** 8$\mu$m $x$ 8$\mu$m and **(iii)** 16$\mu$m $x$ 16$\mu$m.
+
+```{r class.source="watch-out", eval = FALSE}
+hddata <- importVisiumHD(dir.path = "VisiumHD/outs/", 
+                         bin.size = "8", 
+                         resolution_level = "hires")
+```
+
+<br>
+
+## Saving/Loading VoltRon Objects
+
+We use **BPCells** and **ImageArray** packages to accelerate operations of feature matrices and images. Here **BPCells** allows users access and operate on large feature matrices or clustering/spatial analysis, while **ImageArray** provides [pyramids images](https://en.wikipedia.org/wiki/Pyramid_(image_processing)) to allow fast access to large microscopy images. You can download these package from GitHub using **devtools**.
+
+```{r class.source="watch-out", eval = FALSE}
+devtools::install_github("bnprks/BPCells/r")
+devtools::install_github("BIMSBbioinfo/ImageArray")
+library(BPCells)
+library(ImageArray)
+```
+
+We can now save the VoltRon object to disk, large matrices and images will be written to either **hdf5** or **zarr** files depending on the **format** arguement, and the rest of the R object would be written to an `.rds` file, both under the designated **output**.
+
+```{r class.source="watch-out", eval = FALSE}
+hddata <- saveVoltRon(hddata, format = "HDF5VoltRon", output = "data/VisiumHD")
+```
+
+If you want you can load the VoltRon object from the same path as you have saved.
+
+```{r class.source="watch-out", eval = FALSE}
+hddata <- loadVoltRon("data/VisiumHD/")
+```
+
+<br>
+
+## Cell/Spot Analysis
+
+The **BPCells** package provides fast methods to achieve operations common to single cell analysis such as filtering, normalization and dimensionality reduction. Here we have an example of single-cell like clustering of VisiumHD bins which is efficiently clustered.
+
+```{r class.source="watch-out", eval = FALSE}
+spatialpoints <- vrSpatialPoints(hddata)[as.vector(Metadata(hddata)$Count > 10)]
+hddata <- subset(hddata, spatialpoints = spatialpoints)
+hddata <- normalizeData(hddata, sizefactor = 10000)
+hddata <- getFeatures(hddata, n = 3000)
+selected_features <- getVariableFeatures(hddata)
+hddata <- getPCA(hddata, features = selected_features, dims = 30)
+hddata <- getUMAP(hddata, dims = 1:30)
+```
+
+We can now visualized genes over embedding or spatial plots.
+
+```{r class.source="watch-out", eval = FALSE}
+vrEmbeddingFeaturePlot(hddata, features = "Nrgn", embedding = "umap")
+vrSpatialFeaturePlot(hddata, features = "Nrgn")
+```
+  
+<table>
+<tbody>
+  <tr style = "vertical-align: center">
+  <td style = "width:50%; vertical-align: center"> <img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/ondisk_embeddingfeature.png" class="center"></td>
+  <td style = "width:55%; vertical-align: center"> <img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/ondisk_spatialfeature.png" class="center"></td>
+  </tr>
+</tbody>
+</table>
+
+<br>
+
+## Spatial Data Alignment
+
+The image registration workflow in the [Spatial Data Alignment](registration.html) tutorial can also be conducted using disk-backed methods of the VoltRon package. 
+
+```{r class.source="watch-out", eval = FALSE}
+library(VoltRon)
+Xen_R1 <- importXenium("Xenium_R1/outs", sample_name = "XeniumR1", resolution_level = 3)
+Xen_R1_image <- importImageData("Xenium_FFPE_Human_Breast_Cancer_Rep1_he_image.tif",
+                                sample_name = "XeniumR1image",
+                                image_name = "H&E")
+```
+
+<br>
+
+We can save both Xenium and H&E (image) datasets to disk before using the mini Shiny app for registration
+
+```{r class.source="watch-out", eval = FALSE}
+Xen_R1_disk <- saveVoltRon(Xen_R1, 
+                           format = "HDF5VoltRon", 
+                           output = "data/Xen_R1_h5", replace = TRUE)
+Xen_R1_image_disk <- saveVoltRon(Xen_R1_image,
+                                 format = "HDF5VoltRon", 
+                                 output = "data/Xen_R1_image_h5", replace = TRUE)
+```
+
+<br>
+
+These disk-based datasets can then be loaded from the disk easily. 
+
+```{r class.source="watch-out", eval = FALSE}
+Xen_R1_disk <- loadVoltRon("../data/OnDisk/Xen_R1_h5/")
+Xen_R1_image_disk <- loadVoltRon("../data/OnDisk/Xen_R1_image_h5/")
+```
+
+<br>
+
+VoltRon stores large images as pyramids to increase interactive visualization efficiency. This storage strategy allows shiny apps to zoom in to tissue niches in a speedy fashion. VoltRon incorporates `Image_Array` objects (https://github.com/BIMSBbioinfo/ImageArray) to define these pyramids. 
+
+```{r class.source="watch-out", eval = FALSE}
+vrImages(Xen_R1_image_disk, as.raster = TRUE)
+```
+
+```
+Image_Array Object 
+Series 1 of size (3,27587,20511) 
+Series 2 of size (3,13794,10256) 
+Series 3 of size (3,6897,5128) 
+Series 4 of size (3,3449,2564) 
+Series 5 of size (3,1725,1282) 
+Series 6 of size (3,863,641) 
+Series 7 of size (3,432,321) 
+```
+
+<br>
+
+We can now visualize and align the Xenium and H&E objects. 
+
+```{r class.source="watch-out", eval = FALSE}
+# Align spatial data
+xen_reg <- registerSpatialData(object_list = list(Xen_R1_disk, Xen_R1_image_disk))
+```
+
+<div>
+  <video width="100%" height="100%" controls autoplay>
+    <source src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/video_temp.mov" type="video/mp4">
+  Your browser does not support the video tag.
+  </video>
+</div>
+
+<br>
+
+```{r class.source="watch-out", eval = FALSE}
+# transfer aligned H&E to Xenium data
+Xenium_reg <- xen_reg$registered_spat[[2]]
+vrImages(Xen_R1_disk[["Assay1"]], name = "main", channel = "H&E") <- vrImages(Xenium_reg, name = "H&E_reg")
+
+# visualize
+vrImages(Xen_R1_disk, channel = "H&E", scale.perc = 10)
+```
+
+<br>
+
+<img width="92%" height="92%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/ondisk_alignedHE.png" class="center">
\ No newline at end of file