|
a |
|
b/docs/multiomic.html |
|
|
1 |
<!DOCTYPE html> |
|
|
2 |
|
|
|
3 |
<html> |
|
|
4 |
|
|
|
5 |
<head> |
|
|
6 |
|
|
|
7 |
<meta charset="utf-8" /> |
|
|
8 |
<meta name="generator" content="pandoc" /> |
|
|
9 |
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" /> |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
<title>Multi-omics</title> |
|
|
15 |
|
|
|
16 |
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script> |
|
|
17 |
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script> |
|
|
18 |
<meta name="viewport" content="width=device-width, initial-scale=1" /> |
|
|
19 |
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" /> |
|
|
20 |
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script> |
|
|
21 |
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script> |
|
|
22 |
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script> |
|
|
23 |
<style>h1 {font-size: 34px;} |
|
|
24 |
h1.title {font-size: 38px;} |
|
|
25 |
h2 {font-size: 30px;} |
|
|
26 |
h3 {font-size: 24px;} |
|
|
27 |
h4 {font-size: 18px;} |
|
|
28 |
h5 {font-size: 16px;} |
|
|
29 |
h6 {font-size: 12px;} |
|
|
30 |
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);} |
|
|
31 |
pre:not([class]) { background-color: white }</style> |
|
|
32 |
<script src="site_libs/jqueryui-1.13.2/jquery-ui.min.js"></script> |
|
|
33 |
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" /> |
|
|
34 |
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script> |
|
|
35 |
<script src="site_libs/navigation-1.1/tabsets.js"></script> |
|
|
36 |
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" /> |
|
|
37 |
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script> |
|
|
38 |
<link href="site_libs/font-awesome-6.5.2/css/all.min.css" rel="stylesheet" /> |
|
|
39 |
<link href="site_libs/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet" /> |
|
|
40 |
|
|
|
41 |
<style type="text/css"> |
|
|
42 |
code{white-space: pre-wrap;} |
|
|
43 |
span.smallcaps{font-variant: small-caps;} |
|
|
44 |
span.underline{text-decoration: underline;} |
|
|
45 |
div.column{display: inline-block; vertical-align: top; width: 50%;} |
|
|
46 |
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;} |
|
|
47 |
ul.task-list{list-style: none;} |
|
|
48 |
</style> |
|
|
49 |
|
|
|
50 |
<style type="text/css">code{white-space: pre;}</style> |
|
|
51 |
<script type="text/javascript"> |
|
|
52 |
if (window.hljs) { |
|
|
53 |
hljs.configure({languages: []}); |
|
|
54 |
hljs.initHighlightingOnLoad(); |
|
|
55 |
if (document.readyState && document.readyState === "complete") { |
|
|
56 |
window.setTimeout(function() { hljs.initHighlighting(); }, 0); |
|
|
57 |
} |
|
|
58 |
} |
|
|
59 |
</script> |
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
<style type = "text/css"> |
|
|
70 |
.main-container { |
|
|
71 |
max-width: 940px; |
|
|
72 |
margin-left: auto; |
|
|
73 |
margin-right: auto; |
|
|
74 |
} |
|
|
75 |
img { |
|
|
76 |
max-width:100%; |
|
|
77 |
} |
|
|
78 |
.tabbed-pane { |
|
|
79 |
padding-top: 12px; |
|
|
80 |
} |
|
|
81 |
.html-widget { |
|
|
82 |
margin-bottom: 20px; |
|
|
83 |
} |
|
|
84 |
button.code-folding-btn:focus { |
|
|
85 |
outline: none; |
|
|
86 |
} |
|
|
87 |
summary { |
|
|
88 |
display: list-item; |
|
|
89 |
} |
|
|
90 |
details > summary > p:only-child { |
|
|
91 |
display: inline; |
|
|
92 |
} |
|
|
93 |
pre code { |
|
|
94 |
padding: 0; |
|
|
95 |
} |
|
|
96 |
</style> |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
<style type="text/css"> |
|
|
100 |
.dropdown-submenu { |
|
|
101 |
position: relative; |
|
|
102 |
} |
|
|
103 |
.dropdown-submenu>.dropdown-menu { |
|
|
104 |
top: 0; |
|
|
105 |
left: 100%; |
|
|
106 |
margin-top: -6px; |
|
|
107 |
margin-left: -1px; |
|
|
108 |
border-radius: 0 6px 6px 6px; |
|
|
109 |
} |
|
|
110 |
.dropdown-submenu:hover>.dropdown-menu { |
|
|
111 |
display: block; |
|
|
112 |
} |
|
|
113 |
.dropdown-submenu>a:after { |
|
|
114 |
display: block; |
|
|
115 |
content: " "; |
|
|
116 |
float: right; |
|
|
117 |
width: 0; |
|
|
118 |
height: 0; |
|
|
119 |
border-color: transparent; |
|
|
120 |
border-style: solid; |
|
|
121 |
border-width: 5px 0 5px 5px; |
|
|
122 |
border-left-color: #cccccc; |
|
|
123 |
margin-top: 5px; |
|
|
124 |
margin-right: -10px; |
|
|
125 |
} |
|
|
126 |
.dropdown-submenu:hover>a:after { |
|
|
127 |
border-left-color: #adb5bd; |
|
|
128 |
} |
|
|
129 |
.dropdown-submenu.pull-left { |
|
|
130 |
float: none; |
|
|
131 |
} |
|
|
132 |
.dropdown-submenu.pull-left>.dropdown-menu { |
|
|
133 |
left: -100%; |
|
|
134 |
margin-left: 10px; |
|
|
135 |
border-radius: 6px 0 6px 6px; |
|
|
136 |
} |
|
|
137 |
</style> |
|
|
138 |
|
|
|
139 |
<script type="text/javascript"> |
|
|
140 |
// manage active state of menu based on current page |
|
|
141 |
$(document).ready(function () { |
|
|
142 |
// active menu anchor |
|
|
143 |
href = window.location.pathname |
|
|
144 |
href = href.substr(href.lastIndexOf('/') + 1) |
|
|
145 |
if (href === "") |
|
|
146 |
href = "index.html"; |
|
|
147 |
var menuAnchor = $('a[href="' + href + '"]'); |
|
|
148 |
|
|
|
149 |
// mark the anchor link active (and if it's in a dropdown, also mark that active) |
|
|
150 |
var dropdown = menuAnchor.closest('li.dropdown'); |
|
|
151 |
if (window.bootstrap) { // Bootstrap 4+ |
|
|
152 |
menuAnchor.addClass('active'); |
|
|
153 |
dropdown.find('> .dropdown-toggle').addClass('active'); |
|
|
154 |
} else { // Bootstrap 3 |
|
|
155 |
menuAnchor.parent().addClass('active'); |
|
|
156 |
dropdown.addClass('active'); |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
// Navbar adjustments |
|
|
160 |
var navHeight = $(".navbar").first().height() + 15; |
|
|
161 |
var style = document.createElement('style'); |
|
|
162 |
var pt = "padding-top: " + navHeight + "px; "; |
|
|
163 |
var mt = "margin-top: -" + navHeight + "px; "; |
|
|
164 |
var css = ""; |
|
|
165 |
// offset scroll position for anchor links (for fixed navbar) |
|
|
166 |
for (var i = 1; i <= 6; i++) { |
|
|
167 |
css += ".section h" + i + "{ " + pt + mt + "}\n"; |
|
|
168 |
} |
|
|
169 |
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css; |
|
|
170 |
document.head.appendChild(style); |
|
|
171 |
}); |
|
|
172 |
</script> |
|
|
173 |
|
|
|
174 |
<!-- tabsets --> |
|
|
175 |
|
|
|
176 |
<style type="text/css"> |
|
|
177 |
.tabset-dropdown > .nav-tabs { |
|
|
178 |
display: inline-table; |
|
|
179 |
max-height: 500px; |
|
|
180 |
min-height: 44px; |
|
|
181 |
overflow-y: auto; |
|
|
182 |
border: 1px solid #ddd; |
|
|
183 |
border-radius: 4px; |
|
|
184 |
} |
|
|
185 |
|
|
|
186 |
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before { |
|
|
187 |
content: "\e259"; |
|
|
188 |
font-family: 'Glyphicons Halflings'; |
|
|
189 |
display: inline-block; |
|
|
190 |
padding: 10px; |
|
|
191 |
border-right: 1px solid #ddd; |
|
|
192 |
} |
|
|
193 |
|
|
|
194 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before { |
|
|
195 |
content: "\e258"; |
|
|
196 |
font-family: 'Glyphicons Halflings'; |
|
|
197 |
border: none; |
|
|
198 |
} |
|
|
199 |
|
|
|
200 |
.tabset-dropdown > .nav-tabs > li.active { |
|
|
201 |
display: block; |
|
|
202 |
} |
|
|
203 |
|
|
|
204 |
.tabset-dropdown > .nav-tabs > li > a, |
|
|
205 |
.tabset-dropdown > .nav-tabs > li > a:focus, |
|
|
206 |
.tabset-dropdown > .nav-tabs > li > a:hover { |
|
|
207 |
border: none; |
|
|
208 |
display: inline-block; |
|
|
209 |
border-radius: 4px; |
|
|
210 |
background-color: transparent; |
|
|
211 |
} |
|
|
212 |
|
|
|
213 |
.tabset-dropdown > .nav-tabs.nav-tabs-open > li { |
|
|
214 |
display: block; |
|
|
215 |
float: none; |
|
|
216 |
} |
|
|
217 |
|
|
|
218 |
.tabset-dropdown > .nav-tabs > li { |
|
|
219 |
display: none; |
|
|
220 |
} |
|
|
221 |
</style> |
|
|
222 |
|
|
|
223 |
<!-- code folding --> |
|
|
224 |
|
|
|
225 |
|
|
|
226 |
|
|
|
227 |
<style type="text/css"> |
|
|
228 |
|
|
|
229 |
#TOC { |
|
|
230 |
margin: 25px 0px 20px 0px; |
|
|
231 |
} |
|
|
232 |
@media (max-width: 768px) { |
|
|
233 |
#TOC { |
|
|
234 |
position: relative; |
|
|
235 |
width: 100%; |
|
|
236 |
} |
|
|
237 |
} |
|
|
238 |
|
|
|
239 |
@media print { |
|
|
240 |
.toc-content { |
|
|
241 |
/* see https://github.com/w3c/csswg-drafts/issues/4434 */ |
|
|
242 |
float: right; |
|
|
243 |
} |
|
|
244 |
} |
|
|
245 |
|
|
|
246 |
.toc-content { |
|
|
247 |
padding-left: 30px; |
|
|
248 |
padding-right: 40px; |
|
|
249 |
} |
|
|
250 |
|
|
|
251 |
div.main-container { |
|
|
252 |
max-width: 1200px; |
|
|
253 |
} |
|
|
254 |
|
|
|
255 |
div.tocify { |
|
|
256 |
width: 20%; |
|
|
257 |
max-width: 260px; |
|
|
258 |
max-height: 85%; |
|
|
259 |
} |
|
|
260 |
|
|
|
261 |
@media (min-width: 768px) and (max-width: 991px) { |
|
|
262 |
div.tocify { |
|
|
263 |
width: 25%; |
|
|
264 |
} |
|
|
265 |
} |
|
|
266 |
|
|
|
267 |
@media (max-width: 767px) { |
|
|
268 |
div.tocify { |
|
|
269 |
width: 100%; |
|
|
270 |
max-width: none; |
|
|
271 |
} |
|
|
272 |
} |
|
|
273 |
|
|
|
274 |
.tocify ul, .tocify li { |
|
|
275 |
line-height: 20px; |
|
|
276 |
} |
|
|
277 |
|
|
|
278 |
.tocify-subheader .tocify-item { |
|
|
279 |
font-size: 0.90em; |
|
|
280 |
} |
|
|
281 |
|
|
|
282 |
.tocify .list-group-item { |
|
|
283 |
border-radius: 0px; |
|
|
284 |
} |
|
|
285 |
|
|
|
286 |
.tocify-subheader { |
|
|
287 |
display: inline; |
|
|
288 |
} |
|
|
289 |
.tocify-subheader .tocify-item { |
|
|
290 |
font-size: 0.95em; |
|
|
291 |
} |
|
|
292 |
|
|
|
293 |
</style> |
|
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
</head> |
|
|
298 |
|
|
|
299 |
<body> |
|
|
300 |
|
|
|
301 |
|
|
|
302 |
<div class="container-fluid main-container"> |
|
|
303 |
|
|
|
304 |
|
|
|
305 |
<!-- setup 3col/9col grid for toc_float and main content --> |
|
|
306 |
<div class="row"> |
|
|
307 |
<div class="col-xs-12 col-sm-4 col-md-3"> |
|
|
308 |
<div id="TOC" class="tocify"> |
|
|
309 |
</div> |
|
|
310 |
</div> |
|
|
311 |
|
|
|
312 |
<div class="toc-content col-xs-12 col-sm-8 col-md-9"> |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
|
317 |
<div class="navbar navbar-default navbar-fixed-top" role="navigation"> |
|
|
318 |
<div class="container"> |
|
|
319 |
<div class="navbar-header"> |
|
|
320 |
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar"> |
|
|
321 |
<span class="icon-bar"></span> |
|
|
322 |
<span class="icon-bar"></span> |
|
|
323 |
<span class="icon-bar"></span> |
|
|
324 |
</button> |
|
|
325 |
<a class="navbar-brand" href="index.html">VoltRon</a> |
|
|
326 |
</div> |
|
|
327 |
<div id="navbar" class="navbar-collapse collapse"> |
|
|
328 |
<ul class="nav navbar-nav"> |
|
|
329 |
<li> |
|
|
330 |
<a href="tutorials.html">Explore</a> |
|
|
331 |
</li> |
|
|
332 |
<li class="dropdown"> |
|
|
333 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
334 |
Vignette |
|
|
335 |
|
|
|
336 |
<span class="caret"></span> |
|
|
337 |
</a> |
|
|
338 |
<ul class="dropdown-menu" role="menu"> |
|
|
339 |
<li class="dropdown-submenu"> |
|
|
340 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Spatial Data Integration</a> |
|
|
341 |
<ul class="dropdown-menu" role="menu"> |
|
|
342 |
<li> |
|
|
343 |
<a href="registration.html">Spatial Data Alignment</a> |
|
|
344 |
</li> |
|
|
345 |
<li> |
|
|
346 |
<a href="multiomic.html">Multi-omic Integration</a> |
|
|
347 |
</li> |
|
|
348 |
<li> |
|
|
349 |
<a href="nicheclustering.html">Niche Clustering</a> |
|
|
350 |
</li> |
|
|
351 |
</ul> |
|
|
352 |
</li> |
|
|
353 |
<li class="dropdown-submenu"> |
|
|
354 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Downstream Analysis</a> |
|
|
355 |
<ul class="dropdown-menu" role="menu"> |
|
|
356 |
<li> |
|
|
357 |
<a href="roianalysis.html">ROI Analysis</a> |
|
|
358 |
</li> |
|
|
359 |
<li> |
|
|
360 |
<a href="spotanalysis.html">Cell/Spot Analysis</a> |
|
|
361 |
</li> |
|
|
362 |
<li> |
|
|
363 |
<a href="moleculeanalysis.html">Molecule Analysis</a> |
|
|
364 |
</li> |
|
|
365 |
<li> |
|
|
366 |
<a href="pixelanalysis.html">Pixels (Image Only) Analysis</a> |
|
|
367 |
</li> |
|
|
368 |
</ul> |
|
|
369 |
</li> |
|
|
370 |
<li class="dropdown-submenu"> |
|
|
371 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">Utilities</a> |
|
|
372 |
<ul class="dropdown-menu" role="menu"> |
|
|
373 |
<li> |
|
|
374 |
<a href="interactive.html">Interactive Utilities</a> |
|
|
375 |
</li> |
|
|
376 |
<li> |
|
|
377 |
<a href="importingdata.html">Importing Spatial Data</a> |
|
|
378 |
</li> |
|
|
379 |
<li> |
|
|
380 |
<a href="voltronobjects.html">Working with VoltRon Objects</a> |
|
|
381 |
</li> |
|
|
382 |
<li> |
|
|
383 |
<a href="conversion.html">Converting VoltRon Objects</a> |
|
|
384 |
</li> |
|
|
385 |
<li> |
|
|
386 |
<a href="ondisk.html">OnDisk-based Analysis Utilities</a> |
|
|
387 |
</li> |
|
|
388 |
</ul> |
|
|
389 |
</li> |
|
|
390 |
</ul> |
|
|
391 |
</li> |
|
|
392 |
</ul> |
|
|
393 |
<ul class="nav navbar-nav navbar-right"> |
|
|
394 |
<li class="dropdown"> |
|
|
395 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
396 |
<span class="fa fa-envelope-o"></span> |
|
|
397 |
|
|
|
398 |
Contact |
|
|
399 |
|
|
|
400 |
<span class="caret"></span> |
|
|
401 |
</a> |
|
|
402 |
<ul class="dropdown-menu" role="menu"> |
|
|
403 |
<li> |
|
|
404 |
<a href="https://bioinformatics.mdc-berlin.de">Altuna Lab/BIMSB Bioinfo</a> |
|
|
405 |
</li> |
|
|
406 |
<li> |
|
|
407 |
<a href="https://www.mdc-berlin.de/landthaler">Landthaler Lab/BIMSB</a> |
|
|
408 |
</li> |
|
|
409 |
</ul> |
|
|
410 |
</li> |
|
|
411 |
<li class="dropdown"> |
|
|
412 |
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false"> |
|
|
413 |
<span class="fa fa-github"></span> |
|
|
414 |
|
|
|
415 |
GitHub |
|
|
416 |
|
|
|
417 |
<span class="caret"></span> |
|
|
418 |
</a> |
|
|
419 |
<ul class="dropdown-menu" role="menu"> |
|
|
420 |
<li> |
|
|
421 |
<a href="https://github.com/BIMSBbioinfo/VoltRon">VoltRon</a> |
|
|
422 |
</li> |
|
|
423 |
<li> |
|
|
424 |
<a href="https://github.com/BIMSBbioinfo">BIMSB Bioinfo</a> |
|
|
425 |
</li> |
|
|
426 |
</ul> |
|
|
427 |
</li> |
|
|
428 |
</ul> |
|
|
429 |
</div><!--/.nav-collapse --> |
|
|
430 |
</div><!--/.container --> |
|
|
431 |
</div><!--/.navbar --> |
|
|
432 |
|
|
|
433 |
<div id="header"> |
|
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
|
437 |
<h1 class="title toc-ignore">Multi-omics</h1> |
|
|
438 |
|
|
|
439 |
</div> |
|
|
440 |
|
|
|
441 |
|
|
|
442 |
<style> |
|
|
443 |
.title{ |
|
|
444 |
display: none; |
|
|
445 |
} |
|
|
446 |
body { |
|
|
447 |
text-align: justify |
|
|
448 |
} |
|
|
449 |
.center { |
|
|
450 |
display: block; |
|
|
451 |
margin-left: auto; |
|
|
452 |
margin-right: auto; |
|
|
453 |
} |
|
|
454 |
table, th, td { |
|
|
455 |
border-collapse: collapse; |
|
|
456 |
align-self: center; |
|
|
457 |
padding-right: 10px; |
|
|
458 |
padding-left: 10px; |
|
|
459 |
} |
|
|
460 |
</style> |
|
|
461 |
<style type="text/css"> |
|
|
462 |
.watch-out { |
|
|
463 |
color: black; |
|
|
464 |
} |
|
|
465 |
</style> |
|
|
466 |
<p><br></p> |
|
|
467 |
<div id="label-transfer-via-registration" class="section level1"> |
|
|
468 |
<h1>Label Transfer via Registration</h1> |
|
|
469 |
<p>VoltRon is capable of analyzing molecule-level subcellular datasets |
|
|
470 |
independent of single cells, and specifically those that may also found |
|
|
471 |
outside of these cells. To demonstrate how VoltRon investigates |
|
|
472 |
extra-cellular molecules, we will make use of another Xenium in situ |
|
|
473 |
dataset where custom Xenium probes designed to hybridize distinct open |
|
|
474 |
reading frames of SARS-COV-2 virus molecules. These subcellular entities |
|
|
475 |
which then can be detected both within and outside of cells which allows |
|
|
476 |
to understand proliferation mechanics of the virus across the |
|
|
477 |
tissue.</p> |
|
|
478 |
<p>In this use case, we analyse readouts of <strong>eight tissue micro |
|
|
479 |
array (TMA) tissue sections</strong> that were fitted into the scan area |
|
|
480 |
of a slide loaded on a Xenium in situ instrument. These sections were |
|
|
481 |
cut from <strong>control and COVID-19 lung tissues</strong> of donors |
|
|
482 |
categorized based on disease durations (acute and prolonged). You can |
|
|
483 |
download the standard Xenium output folder <a |
|
|
484 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Multiomics/Xenium_SARSCOV2.zip">here</a>.</p> |
|
|
485 |
<p>For more information on the TMA blocks, see <a |
|
|
486 |
href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190732">GSE190732</a> |
|
|
487 |
for more information.</p> |
|
|
488 |
<p><br></p> |
|
|
489 |
<div id="single-cells-and-molecules" class="section level2"> |
|
|
490 |
<h2>Single Cells and Molecules</h2> |
|
|
491 |
<p>Across these eight TMA section, we investigate a section of acute |
|
|
492 |
case which is originated from a lung with extreme number of detected |
|
|
493 |
open reading frames of virus molecules. For convenience, we load a |
|
|
494 |
VoltRon object where cells are already annotated. You can also find the |
|
|
495 |
RDS file <a |
|
|
496 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Multiomics/acutecase1_annotated.rds">here</a>.</p> |
|
|
497 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- readRDS(file = "acutecase1_annotated.rds")</code></pre> |
|
|
498 |
<p><br></p> |
|
|
499 |
<p>Lets visualize both the UMAP and Spatial plot of the annotated |
|
|
500 |
cells.</p> |
|
|
501 |
<pre class="r watch-out"><code>vrEmbeddingPlot(vr2_merged_acute1, assay = "Xenium", embedding = "umap", |
|
|
502 |
group.by = "CellType", label = TRUE) |
|
|
503 |
vrSpatialPlot(vr2_merged_acute1, assay = "Xenium", group.by = "CellType", |
|
|
504 |
plot.segments = TRUE)</code></pre> |
|
|
505 |
<table> |
|
|
506 |
<tbody> |
|
|
507 |
<tr style="vertical-align: center"> |
|
|
508 |
<td style="width:45%; vertical-align: center"> |
|
|
509 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_vrembeddingplot.png" class="center"> |
|
|
510 |
</td> |
|
|
511 |
<td style="width:55%; vertical-align: center"> |
|
|
512 |
<img src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_visualize_celltype.png" class="center"> |
|
|
513 |
</td> |
|
|
514 |
</tr> |
|
|
515 |
</tbody> |
|
|
516 |
</table> |
|
|
517 |
<p><br></p> |
|
|
518 |
<p>We incorporate two open reading frames (ORFs), named |
|
|
519 |
<strong>S2_N</strong> and <strong>S2_orf1ab</strong>, which represent |
|
|
520 |
unreplicated and replicated virus molecules, respectively. We can |
|
|
521 |
visualize again tile the count of these virus expressions by |
|
|
522 |
specifically selecting these two ORFs.</p> |
|
|
523 |
<pre class="r watch-out"><code>vrSpatialPlot(vr2_merged_acute1, assay = "Xenium_mol", group.by = "gene", |
|
|
524 |
group.ids = c("S2_N", "S2_orf1ab"), n.tile = 500)</code></pre> |
|
|
525 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_visualize_virus.png" class="center"></p> |
|
|
526 |
<p><br></p> |
|
|
527 |
<p>We can even zoom into specific locations at the tissue to investigate |
|
|
528 |
virus particles more closely by droping the <strong>n.tile</strong> |
|
|
529 |
argument and calling interactive visualization.</p> |
|
|
530 |
<pre class="r watch-out"><code>vrSpatialPlot(vr2_merged_acute1, assay = "Xenium_mol", group.by = "gene", |
|
|
531 |
group.ids = c("S2_N", "S2_orf1ab"), interactive = TRUE, pt.size = 0.1)</code></pre> |
|
|
532 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecules_visualize_virus_zoom.png" class="center"></p> |
|
|
533 |
<p><br></p> |
|
|
534 |
<p>In the following sections, we will integrate pathological images and |
|
|
535 |
annotations with Xenium datasets to further understand the spatial |
|
|
536 |
localization of virus ORF types over the tissue.</p> |
|
|
537 |
<p><br></p> |
|
|
538 |
</div> |
|
|
539 |
<div id="hot-spot-analysis" class="section level2"> |
|
|
540 |
<h2>Hot Spot Analysis</h2> |
|
|
541 |
<p>VoltRon platform allows users to find hot spots of several types of |
|
|
542 |
spatial entities, for spots, cells, and even molecules. We first learn |
|
|
543 |
spatial neighborhoods from molecules of interests, in this case, the |
|
|
544 |
extracellular virus particles and their ORFs.</p> |
|
|
545 |
<pre class="r watch-out"><code>vr2_merged_acute1</code></pre> |
|
|
546 |
<pre><code>VoltRon Object |
|
|
547 |
acute case 1: |
|
|
548 |
Layers: Section1 |
|
|
549 |
Assays: Xenium(Main) Xenium_mol </code></pre> |
|
|
550 |
<p>We switch to the molecule assay of the VoltRon object, and select |
|
|
551 |
virus ORFs. We also look for other virus ORFs that are 50 pixel distance |
|
|
552 |
from each virus molecule to pin point neighborhoods that are rich in |
|
|
553 |
virus.</p> |
|
|
554 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- getSpatialNeighbors(vr2_merged_acute1, assay = "Xenium_mol", |
|
|
555 |
group.by = "gene", group.ids = c("S2_N", "S2_orf1ab"), |
|
|
556 |
method = "radius", radius = 50)</code></pre> |
|
|
557 |
<p>We can now observe the new spatial neighborhood graph saved in the |
|
|
558 |
VoltRon object with name <strong>radius</strong>.</p> |
|
|
559 |
<pre class="r watch-out"><code>vrGraphNames(vr2_merged_acute1)</code></pre> |
|
|
560 |
<pre><code>[1] "radius"</code></pre> |
|
|
561 |
<p>We now select the feature type and graph name to run an hot spot |
|
|
562 |
analysis which will label each molecule if their neighborhood are dense |
|
|
563 |
in other virus molecules.</p> |
|
|
564 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- getHotSpotAnalysis(vr2_merged_acute1, assay = "Xenium_mol", |
|
|
565 |
features = "gene", graph.type = "radius") |
|
|
566 |
vrSpatialPlot(vr2_merged_acute1, assay = "Xenium_mol", |
|
|
567 |
group.by = "gene_hotspot_flag", group.ids = c("cold", "hot"), |
|
|
568 |
alpha = 1, background.color = "white")</code></pre> |
|
|
569 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_visualize_virus_hotspot.png" class="center"></p> |
|
|
570 |
</div> |
|
|
571 |
<div id="automated-he-registration" class="section level2"> |
|
|
572 |
<h2>Automated H&E Registration</h2> |
|
|
573 |
<p>VoltRon can analyze and also integrate information from distinct |
|
|
574 |
spatial data types such as images, annotations (as regions of interests, |
|
|
575 |
i.e. ROIs) and molecules independently. Using such advanced utilities, |
|
|
576 |
we can make use of histological information and generate new metadata |
|
|
577 |
level information for molecule datasets.</p> |
|
|
578 |
<p>We will first import both histological images and manual annotations |
|
|
579 |
using the <strong>importImageData</strong> function which accepts both |
|
|
580 |
images to generate tile/pixel level datasets but also allows one to |
|
|
581 |
import either a list of segments or <a |
|
|
582 |
href="https://geojson.org/">GeoJSON</a> objects for create ROI-level |
|
|
583 |
datasets as separate assays in a single VoltRon layer. The .geojson file |
|
|
584 |
was generated using <a href="https://qupath.github.io/">QuPath</a> on |
|
|
585 |
the same section H&E image of one Xenium section with the acute |
|
|
586 |
COVID-19 case. We also have to flip the coordinates of ROI annotations |
|
|
587 |
also for they were directly imported from QuPath which incorporates a |
|
|
588 |
reverse coordinate system on the y-axis.</p> |
|
|
589 |
<p>Once imported, the resulting VoltRon object will have two assays in a |
|
|
590 |
single layer, one for tile dataset of the H&E image and the other |
|
|
591 |
for ROI based annotations of again the same image. You can download the |
|
|
592 |
H&E image from <a |
|
|
593 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Multiomics/acutecase1_HE.jpg">here</a>, |
|
|
594 |
and download the json file from <a |
|
|
595 |
href="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Multiomics/acutecase1_membrane.geojson">here</a>.</p> |
|
|
596 |
<pre class="r watch-out"><code># get image |
|
|
597 |
imgdata <- importImageData("acutecase1_HE.jpg", |
|
|
598 |
segments = "acutecase1_membrane.geojson", |
|
|
599 |
sample_name = "acute case 1 (HE)") |
|
|
600 |
imgdata <- flipCoordinates(imgdata, assay = "ROIAnnotation") |
|
|
601 |
imgdata</code></pre> |
|
|
602 |
<pre><code>VoltRon Object |
|
|
603 |
acute case 1 (HE): |
|
|
604 |
Layers: Section1 |
|
|
605 |
Assays: ImageData(Main) ROIAnnotation |
|
|
606 |
Features: main(Main) </code></pre> |
|
|
607 |
<p>By visualizing these annotations interactively, we can see that the |
|
|
608 |
ROIs point to the hyaline membranes. Here, we likely find extra-cellular |
|
|
609 |
SARS-COV-2 molecules mostly outside of any single cell.</p> |
|
|
610 |
<pre class="r watch-out"><code>vrSpatialPlot(imgdata, assay = "ROIAnnotation", group.by = "Sample", |
|
|
611 |
alpha = 0.7, interactive = TRUE)</code></pre> |
|
|
612 |
<p><img width="60%" height="60%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_Covid_HE_zoom.png" class="center"></p> |
|
|
613 |
<p><br></p> |
|
|
614 |
<p>At a first glance, although the Xenium (DAPI) and H&E images are |
|
|
615 |
associated with the same TMA core, they were captured in a different |
|
|
616 |
perspective; that is, one image is almost the 90 degree rotated version |
|
|
617 |
of the other. We will account for this rotation when we (automatically) |
|
|
618 |
align the Xenium data with the H&E image.</p> |
|
|
619 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- modulateImage(vr2_merged_acute1, brightness = 300, channel = "DAPI") |
|
|
620 |
vrImages(vr2_merged_acute1, assay = "Assay7", scale.perc = 20) |
|
|
621 |
vrImages(imgdata, assay = "Assay1", scale.perc = 20)</code></pre> |
|
|
622 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/multiomic_twoimages.png" class="center"></p> |
|
|
623 |
<p><br></p> |
|
|
624 |
<p>We now register the H&E image and annotations to the DAPI image |
|
|
625 |
of Xenium section using the <strong>registerSpatialData</strong> |
|
|
626 |
function. We select FLANN (with “Homography” method) automated |
|
|
627 |
registration mode, negate the DAPI image of the Xenium slide, turn 90 |
|
|
628 |
degrees to the left and set the scale parameter of both images to |
|
|
629 |
<strong>width = 1859</strong>. See <a href="registration.html">Spatial |
|
|
630 |
Data Alignment</a> tutorial for more information.</p> |
|
|
631 |
<pre class="r watch-out"><code>xen_reg <- registerSpatialData(object_list = list(vr2_merged_acute1, imgdata))</code></pre> |
|
|
632 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_HE_registration.png" class="center"></p> |
|
|
633 |
<p><br></p> |
|
|
634 |
<p>Once registered, we can isolate the registered H&E data and use |
|
|
635 |
it further analysis. We can transfer images and their channels across |
|
|
636 |
assays of one or multiple VoltRon objects. Here, we save the registered |
|
|
637 |
image of the H&E data as an additional channel of Xenium section of |
|
|
638 |
the acuse case 1 sample with molecule data.</p> |
|
|
639 |
<pre class="r watch-out"><code>imgdata_reg <- xen_reg$registered_spat[[2]] |
|
|
640 |
vrImages(vr2_merged_acute1[["Assay7"]], name = "main", channel = "H&E") <- |
|
|
641 |
vrImages(imgdata_reg, assay = "Assay1", name = "main_reg") |
|
|
642 |
vrImages(vr2_merged_acute1[["Assay8"]], name = "main", channel = "H&E") <- |
|
|
643 |
vrImages(imgdata_reg, assay = "Assay1", name = "main_reg")</code></pre> |
|
|
644 |
<p>We can now observe the new channels available for the both molecule |
|
|
645 |
and cell-level assays of Xenium data.</p> |
|
|
646 |
<pre class="r watch-out"><code>vrImageChannelNames(vr2_merged_acute1)</code></pre> |
|
|
647 |
<pre><code> Assay Layer Sample Spatial Channels |
|
|
648 |
Assay7 Xenium Section1 acute case 1 main DAPI,H&E |
|
|
649 |
Assay8 Xenium_mol Section1 acute case 1 main DAPI,H&E</code></pre> |
|
|
650 |
<p><br></p> |
|
|
651 |
<p>You can also add the VoltRon object of H&E data as an additional |
|
|
652 |
assay of the Xenium section such that one layer includes cell, |
|
|
653 |
molecules, ROI Annotations and images in the same time. Specifically, we |
|
|
654 |
add the ROI annotation to the Xenium VoltRon object using the |
|
|
655 |
<strong>addAssay</strong> function where we choose the destination |
|
|
656 |
sample/block and the layer of the assay.</p> |
|
|
657 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- addAssay(vr2_merged_acute1, |
|
|
658 |
assay = imgdata_reg[["Assay2"]], |
|
|
659 |
metadata = Metadata(imgdata_reg, assay = "ROIAnnotation"), |
|
|
660 |
assay_name = "ROIAnnotation", |
|
|
661 |
sample = "acute case 1", layer = "Section1") |
|
|
662 |
vr2_merged_acute1</code></pre> |
|
|
663 |
<pre><code>VoltRon Object |
|
|
664 |
acute case 1: |
|
|
665 |
Layers: Section1 |
|
|
666 |
Assays: ROIAnnotation(Main) Xenium_mol Xenium </code></pre> |
|
|
667 |
<p><br></p> |
|
|
668 |
</div> |
|
|
669 |
<div id="interactive-visualization" class="section level2"> |
|
|
670 |
<h2>Interactive Visualization</h2> |
|
|
671 |
<p>Once the H&E image is registered and transfered to the Xenium |
|
|
672 |
data, we can convert the VoltRon object into an Anndata object (h5ad |
|
|
673 |
file) and use <a href="https://tissuumaps.github.io/">TissUUmaps</a> |
|
|
674 |
tool for interactive visualization.</p> |
|
|
675 |
<pre class="r watch-out"><code># convert VoltRon object to h5ad |
|
|
676 |
as.AnnData(vr2_merged_acute1, assay = "Xenium", file = "vr2_merged_acute1.h5ad", |
|
|
677 |
flip_coordinates = TRUE, name = "main", channel = "H&E")</code></pre> |
|
|
678 |
<p>To run TissUUmaps please follow installation instructions <a |
|
|
679 |
href="https://tissuumaps.github.io/installation/">here</a>, then you can |
|
|
680 |
simply drag and drop both the h5ad file and png file to the |
|
|
681 |
application.</p> |
|
|
682 |
<p><img width="90%" height="90%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/multiomic_interactivevisualization.png" class="center"></p> |
|
|
683 |
<p><br></p> |
|
|
684 |
</div> |
|
|
685 |
<div id="label-transfer" class="section level2"> |
|
|
686 |
<h2>Label transfer</h2> |
|
|
687 |
<p>Now we can transfer ROI annotations as additional metadata features |
|
|
688 |
of the molecule assay. We will refer the new metadata column as “Region” |
|
|
689 |
which will indicate if the molecule is within any annotated ROI in the |
|
|
690 |
same layer.</p> |
|
|
691 |
<pre class="r watch-out"><code>vrMainAssay(vr2_merged_acute1) <- "ROIAnnotation" |
|
|
692 |
vr2_merged_acute1$Region <- vrSpatialPoints(vr2_merged_acute1) |
|
|
693 |
|
|
|
694 |
# set the spatial coordinate system of ROI Annotations assay |
|
|
695 |
vrMainSpatial(vr2_merged_acute1[["Assay9"]]) <- "main_reg" |
|
|
696 |
|
|
|
697 |
# transfer ROI annotations to molecules |
|
|
698 |
vr2_merged_acute1 <- transferData(object = vr2_merged_acute1, from = "Assay9", to = "Assay8", |
|
|
699 |
features = "Region") |
|
|
700 |
|
|
|
701 |
# Metadata of molecules |
|
|
702 |
Metadata(vr2_merged_acute1, assay = "Xenium_mol")</code></pre> |
|
|
703 |
<div> |
|
|
704 |
<pre><code style="font-size: 11px;"> id assay_id overlaps_nucleus gene qv Assay Layer Sample Region |
|
|
705 |
<char> <char> <int> <char> <num> <char> <char> <char> <char> |
|
|
706 |
1: 281651070371256_cb791e Assay8 0 ENAH 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
707 |
2: 281651070371258_cb791e Assay8 1 CD274 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
708 |
3: 281651070372515_cb791e Assay8 0 CD163 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
709 |
4: 281651070374059_cb791e Assay8 1 CTSL 33.97290 Xenium_mol Section1 acute case 1 undefined |
|
|
710 |
5: 281651070374411_cb791e Assay8 0 C1S 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
711 |
--- |
|
|
712 |
785787: 281874408669584_cb791e Assay8 0 SFRP2 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
713 |
785788: 281874408671410_cb791e Assay8 0 S2_N 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
714 |
785789: 281874408672438_cb791e Assay8 0 S100A8 40.00000 Xenium_mol Section1 acute case 1 undefined |
|
|
715 |
785790: 281874408673446_cb791e Assay8 0 TIMP1 29.86642 Xenium_mol Section1 acute case 1 undefined |
|
|
716 |
785791: 281874408673882_cb791e Assay8 0 S2_N 40.00000 Xenium_mol Section1 acute case 1 undefined</code></pre> |
|
|
717 |
</div> |
|
|
718 |
<p><br></p> |
|
|
719 |
<p>This annotations can be accessed from the default molecule level |
|
|
720 |
metadata of the VoltRon object.</p> |
|
|
721 |
<pre class="r watch-out"><code>vrMainAssay(vr2_merged_acute1) <- "Xenium_mol" |
|
|
722 |
head(table(vr2_merged_acute1$Region))</code></pre> |
|
|
723 |
<pre><code> ROI1_Assay9 ROI10_Assay9 ROI100_Assay9 ROI101_Assay9 ROI102_Assay9 ROI103_Assay9 |
|
|
724 |
583 624 784 357 215 200 </code></pre> |
|
|
725 |
<p><br></p> |
|
|
726 |
<p>Now we will grab these annotations from molecule metadata and |
|
|
727 |
calculate the ratio of N to orf1ab frequency of SARS-COV-2 particles |
|
|
728 |
across all annotated molecules.</p> |
|
|
729 |
<pre class="r watch-out"><code>library(dplyr) |
|
|
730 |
s2_summary_hyaline <- |
|
|
731 |
Metadata(vr2_merged_acute1, assay = "Xenium_mol") %>% |
|
|
732 |
filter(gene %in% c("S2_N", "S2_orf1ab"), |
|
|
733 |
Region != "undefined") %>% |
|
|
734 |
summarise(S2_N = sum(gene == "S2_N"), |
|
|
735 |
S2_orf1ab = sum(gene == "S2_orf1ab"), |
|
|
736 |
ratio = sum(gene == "S2_N")/sum(gene == "S2_orf1ab")) %>% |
|
|
737 |
as.matrix() |
|
|
738 |
s2_summary_hyaline</code></pre> |
|
|
739 |
<pre><code> S2_N S2_orf1ab ratio |
|
|
740 |
[1,] 50977 33532 1.520249</code></pre> |
|
|
741 |
<p><br></p> |
|
|
742 |
</div> |
|
|
743 |
<div id="manual-annotation" class="section level2"> |
|
|
744 |
<h2>Manual annotation</h2> |
|
|
745 |
<p>To compare the proportion of <strong>S2_N</strong> and |
|
|
746 |
<strong>S2_orf1ab</strong> molecules in hyaline membranes with tissue |
|
|
747 |
sites of possible infection. We focus on another tissue niche where a |
|
|
748 |
large accumulation of cells with high <strong>S2_N</strong> and |
|
|
749 |
<strong>S2_orf1ab</strong> counts.</p> |
|
|
750 |
<p>By visualizing and zooming on a spatial plot with annotated cells, we |
|
|
751 |
can detect a site of cells with high infection which are also |
|
|
752 |
accompanied by a group of T cells.</p> |
|
|
753 |
<pre class="r watch-out"><code>vrSpatialPlot(vr2_merged_acute1, assay = "Xenium", group.by = "CellType", |
|
|
754 |
group.ids = c("H.I. Cells", "T cells"), plot.segments = TRUE, |
|
|
755 |
alpha = 0.6, spatial = "main", channel = "H&E", interactive = TRUE)</code></pre> |
|
|
756 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_spatialplot_infected.png" class="center"></p> |
|
|
757 |
<p><br></p> |
|
|
758 |
<p>Now we use the <strong>annotateSpatialData</strong> function to |
|
|
759 |
create an additional annotation of Xenium molecules directly. By |
|
|
760 |
selecting this region of infection we can directly annotate the |
|
|
761 |
‘Xenium_mol’ assay and the metadata of molecules. We use the H&E |
|
|
762 |
image as the background again, and generate a new molecule-level |
|
|
763 |
metadata column called “Infected”.</p> |
|
|
764 |
<pre class="r watch-out"><code>vr2_merged_acute1 <- annotateSpatialData(vr2_merged_acute1, assay = "Xenium_mol", |
|
|
765 |
label = "Region", use.image = TRUE, |
|
|
766 |
channel = "H&E", annotation_assay = "ROIAnnotation1")</code></pre> |
|
|
767 |
<p><img width="80%" height="80%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_annotation_infected.png" class="center"></p> |
|
|
768 |
<p><br></p> |
|
|
769 |
</div> |
|
|
770 |
<div id="visualize-annotations" class="section level2"> |
|
|
771 |
<h2>Visualize annotations</h2> |
|
|
772 |
<p>Before visualizing the annotations and molecule localizations in the |
|
|
773 |
same time, lets make some changes to the metadata. We basically wanna |
|
|
774 |
change the annotation of all ROIs originated from the GeoJson file to |
|
|
775 |
have the label <strong>Hyaline Membrane</strong>.</p> |
|
|
776 |
<pre class="r watch-out"><code># update molecule metadata |
|
|
777 |
vrMainAssay(vr2_merged_acute1_infected) <- "Xenium_mol" |
|
|
778 |
vr2_merged_acute1_infected$Region <- gsub("ROI[0-9]+", "Hyaline Membrane", |
|
|
779 |
vr2_merged_acute1_infected$Region) |
|
|
780 |
|
|
|
781 |
# update ROI metadata |
|
|
782 |
vrMainAssay(vr2_merged_acute1_infected) <- "ROIAnnotation" |
|
|
783 |
vr2_merged_acute1_infected$Region <- gsub("ROI[0-9]+", "Hyaline Membrane", |
|
|
784 |
vr2_merged_acute1_infected$Region)</code></pre> |
|
|
785 |
<p>Now we can visualize two assays together. We use the |
|
|
786 |
<strong>addSpatialLayer</strong> function to overlay molecule locations |
|
|
787 |
with both the Hyaline Membrane and the infected region annotations.</p> |
|
|
788 |
<pre class="r watch-out"><code>vrSpatialPlot(vr2_merged_acute1_infected, assay = "Xenium_mol", group.by = "gene", |
|
|
789 |
group.ids = c("S2_N", "S2_orf1ab"), n.tile = 500) |> |
|
|
790 |
addSpatialLayer(vr2_merged_acute1_infected, assay = "ROIAnnotation", |
|
|
791 |
group.by = "Region", alpha = 0.3, |
|
|
792 |
colors = list(`Hyaline Membrane` = "blue", `Infected` = "yellow"))</code></pre> |
|
|
793 |
<p><img width="70%" height="70%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/molecule_visualize_virus_overlay.png" class="center"></p> |
|
|
794 |
</div> |
|
|
795 |
<div id="comparison-of-annotations" class="section level2"> |
|
|
796 |
<h2>Comparison of annotations</h2> |
|
|
797 |
<p>By using the newly annotated infection-associated virus molecules, we |
|
|
798 |
can do a comparison of infected regions versus the hyaline |
|
|
799 |
membranes.</p> |
|
|
800 |
<pre class="r watch-out"><code>library(dplyr) |
|
|
801 |
s2_summary_infected <- |
|
|
802 |
Metadata(vr2_merged_acute1, assay = "Xenium_mol") %>% |
|
|
803 |
filter(gene %in% c("S2_N", "S2_orf1ab"), |
|
|
804 |
Region == "Infected") %>% |
|
|
805 |
summarise(S2_N = sum(gene == "S2_N"), |
|
|
806 |
S2_orf1ab = sum(gene == "S2_orf1ab"), |
|
|
807 |
ratio = sum(gene == "S2_N")/sum(gene == "S2_orf1ab")) %>% |
|
|
808 |
as.matrix() |
|
|
809 |
s2_summary_infected</code></pre> |
|
|
810 |
<pre><code> S2_N S2_orf1ab ratio |
|
|
811 |
[1,] 6376 2372 2.688027</code></pre> |
|
|
812 |
<p>Comparison of both the ratio between the infected region and the |
|
|
813 |
hyaline membranes show a considerable difference of the population of |
|
|
814 |
<strong>S2_N</strong> and <strong>S2_orf1ab</strong> molecules.</p> |
|
|
815 |
<pre class="r watch-out"><code>S2_table <- matrix(c(s2_summary_hyaline[,1:2], |
|
|
816 |
s2_summary_infected[,1:2]), |
|
|
817 |
dimnames = list(Region = c("Hyaline", "Infected"), |
|
|
818 |
S2 = c("N", "orf1ab")), |
|
|
819 |
ncol = 2, byrow = TRUE) |
|
|
820 |
S2_table</code></pre> |
|
|
821 |
<pre><code> S2 |
|
|
822 |
Region N orf1ab |
|
|
823 |
Hyaline 50977 33532 |
|
|
824 |
Infected 6376 2372</code></pre> |
|
|
825 |
<p>A quick test of independance on this contingency table show a |
|
|
826 |
significant difference of ratios across Hyaline and Infected |
|
|
827 |
regions.</p> |
|
|
828 |
<pre class="r watch-out"><code>fisher.test(S2_table, alternative = "two.sided")</code></pre> |
|
|
829 |
<pre><code> |
|
|
830 |
Fisher's Exact Test for Count Data |
|
|
831 |
|
|
|
832 |
data: S2_table |
|
|
833 |
p-value < 2.2e-16 |
|
|
834 |
alternative hypothesis: true odds ratio is not equal to 1 |
|
|
835 |
95 percent confidence interval: |
|
|
836 |
0.5382305 0.5941683 |
|
|
837 |
sample estimates: |
|
|
838 |
odds ratio |
|
|
839 |
0.5655696 </code></pre> |
|
|
840 |
</div> |
|
|
841 |
</div> |
|
|
842 |
|
|
|
843 |
|
|
|
844 |
|
|
|
845 |
</div> |
|
|
846 |
</div> |
|
|
847 |
|
|
|
848 |
</div> |
|
|
849 |
|
|
|
850 |
<script> |
|
|
851 |
|
|
|
852 |
// add bootstrap table styles to pandoc tables |
|
|
853 |
function bootstrapStylePandocTables() { |
|
|
854 |
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed'); |
|
|
855 |
} |
|
|
856 |
$(document).ready(function () { |
|
|
857 |
bootstrapStylePandocTables(); |
|
|
858 |
}); |
|
|
859 |
|
|
|
860 |
|
|
|
861 |
</script> |
|
|
862 |
|
|
|
863 |
<!-- tabsets --> |
|
|
864 |
|
|
|
865 |
<script> |
|
|
866 |
$(document).ready(function () { |
|
|
867 |
window.buildTabsets("TOC"); |
|
|
868 |
}); |
|
|
869 |
|
|
|
870 |
$(document).ready(function () { |
|
|
871 |
$('.tabset-dropdown > .nav-tabs > li').click(function () { |
|
|
872 |
$(this).parent().toggleClass('nav-tabs-open'); |
|
|
873 |
}); |
|
|
874 |
}); |
|
|
875 |
</script> |
|
|
876 |
|
|
|
877 |
<!-- code folding --> |
|
|
878 |
|
|
|
879 |
<script> |
|
|
880 |
$(document).ready(function () { |
|
|
881 |
|
|
|
882 |
// temporarily add toc-ignore selector to headers for the consistency with Pandoc |
|
|
883 |
$('.unlisted.unnumbered').addClass('toc-ignore') |
|
|
884 |
|
|
|
885 |
// move toc-ignore selectors from section div to header |
|
|
886 |
$('div.section.toc-ignore') |
|
|
887 |
.removeClass('toc-ignore') |
|
|
888 |
.children('h1,h2,h3,h4,h5').addClass('toc-ignore'); |
|
|
889 |
|
|
|
890 |
// establish options |
|
|
891 |
var options = { |
|
|
892 |
selectors: "h1,h2,h3,h4", |
|
|
893 |
theme: "bootstrap3", |
|
|
894 |
context: '.toc-content', |
|
|
895 |
hashGenerator: function (text) { |
|
|
896 |
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_'); |
|
|
897 |
}, |
|
|
898 |
ignoreSelector: ".toc-ignore", |
|
|
899 |
scrollTo: 0 |
|
|
900 |
}; |
|
|
901 |
options.showAndHide = false; |
|
|
902 |
options.smoothScroll = false; |
|
|
903 |
|
|
|
904 |
// tocify |
|
|
905 |
var toc = $("#TOC").tocify(options).data("toc-tocify"); |
|
|
906 |
}); |
|
|
907 |
</script> |
|
|
908 |
|
|
|
909 |
<!-- dynamically load mathjax for compatibility with self-contained --> |
|
|
910 |
<script> |
|
|
911 |
(function () { |
|
|
912 |
var script = document.createElement("script"); |
|
|
913 |
script.type = "text/javascript"; |
|
|
914 |
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; |
|
|
915 |
document.getElementsByTagName("head")[0].appendChild(script); |
|
|
916 |
})(); |
|
|
917 |
</script> |
|
|
918 |
|
|
|
919 |
</body> |
|
|
920 |
</html> |