Diff of /docs/index.Rmd [000000] .. [413088]

Switch to unified view

a b/docs/index.Rmd
1
---
2
title: 'VoltRon'
3
---
4
5
<style>
6
.title{
7
  display: none;
8
}
9
body {
10
  text-align: justify;
11
}
12
.center {
13
  display: block;
14
  margin-left: auto;
15
  margin-right: auto;
16
}
17
.main-container {
18
  max-width: 1200px;
19
  margin-left: auto;
20
  margin-right: auto;
21
}
22
p.maintext {
23
  font-size: 1.2em;
24
}
25
table td, table td * {
26
    vertical-align: top;
27
}
28
ul.maintext2 {
29
  font-size: 1.1em; 
30
}
31
ul ul.maintext2 {
32
  font-size: 1.1em;
33
}
34
li.maintext2 {
35
  font-size: 1.1em;
36
}
37
</style>
38
39
```{r setup, include=FALSE}
40
# use rmarkdown::render_site(envir = knitr::knit_global())
41
knitr::opts_chunk$set(echo = TRUE)
42
```
43
44
<br>
45
46
<!-- ## VoltRon: An R package for Spatial Data Analysis and Integration -->
47
48
<br>
49
 
50
<div style = "width:76%; margin-left: auto; margin-right: auto; ">   
51
<img width="100%" height="100%" src="https://bimsbstatic.mdc-berlin.de/landthaler/VoltRon/Package/images/voltron_framework_box_io.png" class="center">
52
 
53
<br>
54
55
<p class="maintext"> <strong> VoltRon </strong> is a spatial omic analysis toolbox for multi-omics integration using spatial image registration. VoltRon is also capable of analyzing multiple types of spatially-aware data modalities.</p>
56
   <ul class="maintext2">
57
    <li style="padding-bottom: 10px">
58
      <strong> Unique data structure </strong> of VoltRon allows users to seamlessly define tissue blocks, layers and multiple assay types in one R object.
59
    </li>
60
    <li style="padding-bottom: 10px">
61
      <strong> End-to-end downstream data analysis </strong> for distinct spatial biology technologies are supported. VoltRon visualizes and analyzes regions of interests (ROIs), spots, cells, molecules and tiles **(under development)**.
62
    </li>
63
    <li style="padding-bottom: 10px">
64
      <strong> Automated Image Registration </strong> incorporates <a href="https://opencv.org/">OpenCV</a> (fully embedded into the package using <a href="https://www.rcpp.org/">Rcpp</a>) to detect common features across images and achieves registration. Users may interact with built-in mini shiny apps to change alignment parameters and validate alignment accuracy.
65
    </li>
66
    <li style="padding-bottom: 10px">
67
      <strong> Manual Image Registration </strong> helps users to select common features across spatial datasets using reference images stored in VoltRon objects. In case automated image registration doesn't work, you can still align images by manually picking landmark points.
68
    </li>
69
    <li style="padding-bottom: 10px">
70
    <p style="padding-bottom: 3px"> <strong> Spatially Aware Analysis </strong> allows detecting spatial patterns across cells, spots, molecules and other entities. </p>
71
    <ul class="maintext3">
72
      <li style="padding-bottom: 10px padding-top: 12px">
73
      <strong>(Niche Clustering: Spots)</strong> VoltRon allows integration to single cell RNA datasets using <a href="https://satijalab.org/seurat/">Seurat</a>, <a href="https://www.bioconductor.org/packages/release/bioc/vignettes/SingleCellExperiment/inst/doc/intro.html">SingleCellExperiment</a> and <a href="https://github.com/dmcable/spacexr">spacexr</a> for spot deconvolution. Estimated cell type abundances are then used to cluster spots into groups of cell type niches which are defined as spots with distinct composition of cell types.
74
      </li>
75
      <li style="padding-bottom: 2px">
76
      <strong>(Niche Clustering: Cells)</strong> VoltRon creates spatial neighborhoods around cells to cluster local cellular compositions around all cells which in turn informs users on cell types that are likely within proximity to each other.
77
      </li>
78
      <li style="padding-bottom: 10px">
79
      <strong>(Hot Spot Detection)</strong> VoltRon detects region of locally spatial patterns of cells/molecules/spots that are abundant in biological events and/or features.
80
      </li>
81
    </ul>  
82
    </li>
83
    <li style="padding-bottom: 10px">
84
    <p> <strong> Support for Big Data </strong> for VoltRon objects enables storing large feature data matrices and large microscopic images of tissues on disk without overloading memory, thus allowing analysis on large datasets with ease. VoltRon stores large images as pyramid structures to speed up visualization and data retrieval. </p>
85
    </li>
86
    <li style="padding-bottom: 10px">
87
    <p> <strong> Interoperability across R/Python frameworks </strong> allows users to convert VoltRon objects to a large number of objects used by other spatial omic platforms such as Seurat, Squidpy (AnnData), SpatialExperiment (BioConductor) and Giotto. </p>
88
    </li>
89
  </ul>
90
</div>
91
92
<div style = "width:70%; margin-left: auto; margin-right: auto"> 
93
<div style= "float:left; margin-left: auto; margin-right: auto">
94
95
<br>
96
97
## Staying up-to-date
98
99
To ask questions please use VoltRon discussion forum on google groups.
100
101
- https://groups.google.com/forum/#!forum/voltron_discussion
102
103
<br>
104
105
## Installation
106
107
Install from the GitHub repository using devtools (with R version 4.3.0 or higher):
108
109
``` r
110
if (!require("devtools", quietly = TRUE))
111
    install.packages("devtools")
112
devtools::install_github("BIMSBbioinfo/VoltRon")
113
```
114
115
Depending on the number of required dependencies, installation may be completed under a minute or may take a few minutes. 
116
117
On **Windows** and **MacOS**, OpenCV will be downloaded automatically upon installation. However, [Rtools](https://cran.r-project.org/bin/windows/Rtools/rtools43/rtools.html) may be required to be downloaded too, hence this may take some time!
118
119
On **Ubuntu** we provide a set of instructions that may help users to build OpenCV with necessary headers [here](https://github.com/BIMSBbioinfo/VoltRon/blob/main/inst/extdata/install_ubuntu.md.
120
121
On **Fedora** you may need [`opencv-devel`](https://src.fedoraproject.org/rpms/opencv):
122
123
```sh
124
yum install opencv-devel
125
```
126
127
<br>
128
129
## Dependencies
130
131
VoltRon incorporates `RBioformats` package to import images from `ome.tiff` files, which requires [Java JDK](https://www.oracle.com/java/technologies/downloads/?er=221886) to be available in your system:
132
133
See [https://cran.r-project.org/web/packages/rJava](https://cran.r-project.org/web/packages/rJava) for more information.
134
135
<br>
136
137
## Docker Hub
138
139
You can also run VoltRon from a container already available in [Docker Hub](https://hub.docker.com/repository/docker/amanukyan1385/rstudio-voltron/general). The docker image is based on the [Rocker Project](https://rocker-project.org/) and can be run from the terminal like below: 
140
141
```
142
docker run --rm -ti -e PASSWORD=<yourpassword> -p 8787:8787 amanukyan1385/rstudio-voltron:main
143
```
144
145
Then, start the RStudio session from the browser at `http://localhost:8787/` and enter `rstudio` as username and `<yourpassword>` as password. 
146
147
See [here](https://github.com/BIMSBbioinfo/VoltRon/blob/main/inst/extdata/docker_desktop_instructions.md) for more instructions on how to run the container using [Docker Desktop](https://www.docker.com/products/docker-desktop/).
148
149
<br>
150
151
## References
152
153
Manukyan, A., Bahry, E., Wyler, E., Becher, E., Pascual-Reguant, A., Plumbom, I., ... & Akalin, A. (2023). [VoltRon: A Spatial Omics Analysis Platform for Multi-Resolution and Multi-omics Integration using Image Registration](https://www.biorxiv.org/content/10.1101/2023.12.15.571667v1). bioRxiv, 2023-12. d
154
155
To ask questions please use VoltRon discussion forum on [Google groups](https://groups.google.com/forum/#!forum/voltron_discussion).
156
</div>
157
</div>