|
a |
|
b/R/spatial.R |
|
|
1 |
#' @include allgenerics.R |
|
|
2 |
#' |
|
|
3 |
NULL |
|
|
4 |
|
|
|
5 |
#### |
|
|
6 |
# Spatial Neighbor graphs #### |
|
|
7 |
#### |
|
|
8 |
|
|
|
9 |
#' Get spatial neighbors |
|
|
10 |
#' |
|
|
11 |
#' get neighbors in an assay given spatial coordinates |
|
|
12 |
#' |
|
|
13 |
#' @param object a VoltRon object |
|
|
14 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
15 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
16 |
#' @param group.by a column of metadata from \link{Metadata} used as grouping label for the spatial entities. |
|
|
17 |
#' @param group.ids a subset of categories defined in metadata column from \code{group.by}. |
|
|
18 |
#' @param method the method spatial connectivity: "delaunay", "spatialkNN", "radius". |
|
|
19 |
#' @param k number of neighbors for kNN. |
|
|
20 |
#' @param radius When \code{method = "radius"} selected, determines the radius of a neighborhood ball around each spatial point. |
|
|
21 |
#' @param graph.key the name of the graph. |
|
|
22 |
#' @param verbose verbose |
|
|
23 |
#' |
|
|
24 |
#' @importFrom igraph add_edges simplify make_empty_graph vertices |
|
|
25 |
#' @importFrom RCDT delaunay |
|
|
26 |
#' @importFrom RANN nn2 |
|
|
27 |
#' @importFrom data.table data.table melt |
|
|
28 |
#' @importFrom stats dist |
|
|
29 |
#' |
|
|
30 |
#' @export |
|
|
31 |
getSpatialNeighbors <- function(object, |
|
|
32 |
assay = NULL, |
|
|
33 |
group.by = NULL, |
|
|
34 |
group.ids = NULL, |
|
|
35 |
method = "delaunay", |
|
|
36 |
k = 10, |
|
|
37 |
radius = numeric(0), |
|
|
38 |
graph.key = method, |
|
|
39 |
verbose = TRUE){ |
|
|
40 |
|
|
|
41 |
# get coordinates |
|
|
42 |
spatialpoints <- vrSpatialPoints(object, assay = assay) |
|
|
43 |
|
|
|
44 |
# get spatial graph per assay |
|
|
45 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
46 |
|
|
|
47 |
# get assay connectivity |
|
|
48 |
assay_names_connected <- getBlockConnectivity(object, assay = assay_names) |
|
|
49 |
|
|
|
50 |
# get spatial edges |
|
|
51 |
spatialedges_list <- list() |
|
|
52 |
for(assy in assay_names_connected){ |
|
|
53 |
|
|
|
54 |
# get coordinates |
|
|
55 |
cur_coords <- as.matrix(vrCoordinates(object, assay = assy)) |
|
|
56 |
|
|
|
57 |
# get groups |
|
|
58 |
if(!is.null(group.by) && !is.null(group.ids)){ |
|
|
59 |
|
|
|
60 |
# metadata |
|
|
61 |
if(verbose) |
|
|
62 |
message("Calculating Spatial Neighbors with group.by='", group.by, "' and group.ids='", paste(group.ids, collapse = ","), "'") |
|
|
63 |
metadata = Metadata(object, assay = assy) |
|
|
64 |
if(!group.by %in% colnames(metadata)) |
|
|
65 |
stop("The column '", group.by, "' was not found in the metadata!") |
|
|
66 |
if(inherits(metadata, "data.table")){ |
|
|
67 |
cur_group.by <- metadata[,get(names(metadata)[which(colnames(metadata) == group.by)])] |
|
|
68 |
names(cur_group.by) <- metadata$id |
|
|
69 |
} else { |
|
|
70 |
cur_group.by <- metadata[,group.by] |
|
|
71 |
if(!is.null(rownames(metadata))){ |
|
|
72 |
names(cur_group.by) <- rownames(metadata) |
|
|
73 |
} else { |
|
|
74 |
names(cur_group.by) <- as.vector(metadata$id) |
|
|
75 |
} |
|
|
76 |
} |
|
|
77 |
if(!is.null(group.ids)){ |
|
|
78 |
len_set_diff <- length(setdiff(group.ids, cur_group.by)) |
|
|
79 |
if(len_set_diff > 0){ |
|
|
80 |
} else if(len_set_diff == length(group.ids)){ |
|
|
81 |
stop("None of the groups defined in group.ids exist in group.by!") |
|
|
82 |
} |
|
|
83 |
cur_group.by <- cur_group.by[cur_group.by %in% group.ids] |
|
|
84 |
cur_coords <- cur_coords[names(cur_group.by),] |
|
|
85 |
} |
|
|
86 |
|
|
|
87 |
} else if(sum(is.null(group.by),is.null(group.ids)) == 2) { |
|
|
88 |
|
|
|
89 |
} else { |
|
|
90 |
stop("Either both 'group.by' and 'group.ids' should be specified or both should be null") |
|
|
91 |
} |
|
|
92 |
|
|
|
93 |
# get edges |
|
|
94 |
spatialedges <- |
|
|
95 |
switch(method, |
|
|
96 |
delaunay = { |
|
|
97 |
nnedges <- RCDT::delaunay(cur_coords) |
|
|
98 |
nnedges <- as.vector(t(nnedges$edges[,seq_len(2)])) |
|
|
99 |
nnedges <- rownames(cur_coords)[nnedges] |
|
|
100 |
nnedges |
|
|
101 |
}, |
|
|
102 |
spatialkNN = { |
|
|
103 |
# nnedges <- RANN::nn2(cur_coords, k = k + 1) |
|
|
104 |
nnedges <- knn_annoy(cur_coords, k = k + 1) |
|
|
105 |
names(nnedges) <- c("nn.index", "nn.dist") |
|
|
106 |
nnedges <- data.table::melt(data.table::data.table(nnedges$nn.index), id.vars = "V1") |
|
|
107 |
nnedges <- nnedges[,c("V1", "value")][V1 > 0 & value > 0] |
|
|
108 |
nnedges <- as.vector(t(as.matrix(nnedges))) |
|
|
109 |
nnedges <- rownames(cur_coords)[nnedges] |
|
|
110 |
nnedges |
|
|
111 |
}, |
|
|
112 |
radius = { |
|
|
113 |
if(length(radius) == 0){ |
|
|
114 |
spot.radius <- vrAssayParams(object[[assy]], param = "nearestpost.distance") |
|
|
115 |
radius <- ifelse(is.null(spot.radius), 1, spot.radius) |
|
|
116 |
} |
|
|
117 |
nnedges <- suppressWarnings({RANN::nn2(cur_coords, searchtype = "radius", radius = radius, k = min(300, sqrt(nrow(cur_coords))/2))}) |
|
|
118 |
nnedges <- data.table::melt(data.table::data.table(nnedges$nn.idx), id.vars = "V1") |
|
|
119 |
nnedges <- nnedges[,c("V1", "value")][V1 > 0 & value > 0] |
|
|
120 |
nnedges <- as.vector(t(as.matrix(nnedges))) |
|
|
121 |
nnedges <- rownames(cur_coords)[nnedges] |
|
|
122 |
nnedges |
|
|
123 |
}) |
|
|
124 |
spatialedges_list <- c(spatialedges_list, list(spatialedges)) |
|
|
125 |
} |
|
|
126 |
spatialedges <- unlist(spatialedges_list) |
|
|
127 |
|
|
|
128 |
# make graph and add edges |
|
|
129 |
graph <- make_empty_graph(directed = FALSE) + vertices(spatialpoints) |
|
|
130 |
graph <- add_edges(graph, edges = spatialedges) |
|
|
131 |
graph <- simplify(graph, remove.multiple = TRUE, remove.loops = FALSE) |
|
|
132 |
vrGraph(object, assay = assay_names, graph.type = graph.key) <- graph |
|
|
133 |
|
|
|
134 |
# return |
|
|
135 |
return(object) |
|
|
136 |
} |
|
|
137 |
|
|
|
138 |
#### |
|
|
139 |
# Neighbor Enrichment test #### |
|
|
140 |
#### |
|
|
141 |
|
|
|
142 |
#' vrNeighbourhoodEnrichment |
|
|
143 |
#' |
|
|
144 |
#' Conduct Neighborhood enrichment test for pairs of clusters for all assays |
|
|
145 |
#' |
|
|
146 |
#' @param object a VoltRon object |
|
|
147 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
148 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
149 |
#' @param group.by a column from metadata to seperate spatial points |
|
|
150 |
#' @param graph.type the type of graph to determine spatial neighborhood |
|
|
151 |
#' @param num.sim the number of simulations |
|
|
152 |
#' @param seed seed |
|
|
153 |
#' @param verbose verbose |
|
|
154 |
#' |
|
|
155 |
#' @export |
|
|
156 |
#' |
|
|
157 |
vrNeighbourhoodEnrichment <- function(object, assay = NULL, group.by = NULL, graph.type = "delaunay", num.sim = 1000, seed = 1, verbose = TRUE){ |
|
|
158 |
|
|
|
159 |
# set the seed |
|
|
160 |
set.seed(seed) |
|
|
161 |
|
|
|
162 |
# check object |
|
|
163 |
if(!inherits(object, "VoltRon")) |
|
|
164 |
stop("Please provide a VoltRon object!") |
|
|
165 |
|
|
|
166 |
# sample metadata |
|
|
167 |
sample.metadata <- SampleMetadata(object) |
|
|
168 |
|
|
|
169 |
# get assay names |
|
|
170 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
171 |
|
|
|
172 |
# test for each assay |
|
|
173 |
neigh_results <- list() |
|
|
174 |
for(assy in assay_names){ |
|
|
175 |
if(verbose) |
|
|
176 |
message("Testing Neighborhood Enrichment of '", group.by ,"' for '", assy, "'") |
|
|
177 |
object_subset <- subsetVoltRon(object, assays = assy) |
|
|
178 |
neigh_results[[assy]] <- vrNeighbourhoodEnrichmentSingle(object_subset, group.by = group.by, graph.type = graph.type, |
|
|
179 |
num.sim = num.sim, seed = seed) |
|
|
180 |
neigh_results[[assy]] <- data.frame(neigh_results[[assy]], AssayID = assy, SampleMetadata(object_subset)) |
|
|
181 |
} |
|
|
182 |
all_neigh_results <- do.call(rbind, neigh_results) |
|
|
183 |
|
|
|
184 |
# return |
|
|
185 |
return(all_neigh_results) |
|
|
186 |
} |
|
|
187 |
|
|
|
188 |
#' vrNeighbourhoodEnrichmentSingle |
|
|
189 |
#' |
|
|
190 |
#' Conduct Neighborhood enrichment test for pairs of clusters for a vrAssay |
|
|
191 |
#' |
|
|
192 |
#' @param object a VoltRon object |
|
|
193 |
#' @param group.by a column from metadata to seperate spatial points |
|
|
194 |
#' @param graph.type the type of graph to determine spatial neighborhood |
|
|
195 |
#' @param num.sim the number of simulations |
|
|
196 |
#' @param seed seed |
|
|
197 |
#' |
|
|
198 |
#' @importFrom dplyr group_by bind_rows filter summarize mutate n |
|
|
199 |
#' @importFrom igraph neighborhood |
|
|
200 |
#' |
|
|
201 |
#' @noRd |
|
|
202 |
vrNeighbourhoodEnrichmentSingle <- function(object, group.by = NULL, graph.type = "delaunay", num.sim = 1000, seed = 1) { |
|
|
203 |
|
|
|
204 |
# set the seed |
|
|
205 |
set.seed(seed) |
|
|
206 |
|
|
|
207 |
# main object |
|
|
208 |
metadata <- Metadata(object) |
|
|
209 |
if(group.by %in% colnames(metadata)){ |
|
|
210 |
grp <- metadata[[group.by]] |
|
|
211 |
names(grp) <- rownames(metadata) |
|
|
212 |
} else { |
|
|
213 |
stop("'", group.by, "' is not available in metadata!") |
|
|
214 |
} |
|
|
215 |
|
|
|
216 |
# get graph and neighborhood |
|
|
217 |
graph <- vrGraph(object, graph.type = graph.type) |
|
|
218 |
neighbors_graph <- igraph::neighborhood(graph) |
|
|
219 |
neighbors_graph_data <- lapply(neighbors_graph, function(x) { |
|
|
220 |
# cbind(x$name[1],x$name[-1]) |
|
|
221 |
cbind(x$name[1],x$name)[-1,] |
|
|
222 |
# if(dat) |
|
|
223 |
}) |
|
|
224 |
neighbors_graph_data <- do.call(rbind, neighbors_graph_data) |
|
|
225 |
colnames(neighbors_graph_data) <- c("from", "to") |
|
|
226 |
|
|
|
227 |
# get simulations |
|
|
228 |
grp_sim <- vapply(seq_len(1000), function(x) sample(grp), grp) |
|
|
229 |
rownames(grp_sim) <- names(grp) |
|
|
230 |
|
|
|
231 |
# get adjacency for observed and simulated pairs |
|
|
232 |
neighbors_graph_data_list <- list(data.frame(neighbors_graph_data, from_value = grp[neighbors_graph_data[,1]], to_value = grp[neighbors_graph_data[,2]], type = "obs")) |
|
|
233 |
for(i in 2:(ncol(grp_sim)+1)) |
|
|
234 |
neighbors_graph_data_list[[i]] <- data.frame(neighbors_graph_data, from_value = grp_sim[,i-1][neighbors_graph_data[,1]], to_value = grp_sim[,i-1][neighbors_graph_data[,2]], type = paste0("sim", i)) |
|
|
235 |
neighbors_graph_data <- dplyr::bind_rows(neighbors_graph_data_list) |
|
|
236 |
|
|
|
237 |
# get adjacency for observed and simulated pairs |
|
|
238 |
neigh_results <- neighbors_graph_data %>% |
|
|
239 |
dplyr::group_by(from_value, to_value, type) %>% |
|
|
240 |
dplyr::summarize(mean_value = dplyr::n()) %>% |
|
|
241 |
dplyr::group_by(from_value, to_value) %>% |
|
|
242 |
dplyr::mutate(assoc_test = mean_value > ifelse("obs" %in% type, mean_value[type == "obs"], 0), |
|
|
243 |
segreg_test = mean_value < ifelse("obs" %in% type, mean_value[type == "obs"], 0)) %>% |
|
|
244 |
dplyr::mutate(majortype = ifelse(type == "obs", "obs", "sim")) %>% |
|
|
245 |
dplyr::group_by(from_value, to_value) %>% |
|
|
246 |
dplyr::mutate(value = ifelse(sum(majortype == "obs") > 0, log(mean_value[majortype == "obs"]/mean(mean_value[majortype == "sim"])), 0)) %>% |
|
|
247 |
dplyr::filter(type != "obs") %>% |
|
|
248 |
dplyr::group_by(from_value, to_value) %>% |
|
|
249 |
dplyr::summarize(p_assoc = mean(assoc_test), p_segreg = mean(segreg_test), value = value[1]) %>% |
|
|
250 |
dplyr::mutate(p_assoc_adj = p.adjust(p_assoc, method = "fdr"), |
|
|
251 |
p_segreg_adj = p.adjust(p_segreg, method = "fdr")) |
|
|
252 |
|
|
|
253 |
# number of samples |
|
|
254 |
grp_table <- table(grp) |
|
|
255 |
neigh_results$n_from <- grp_table[neigh_results$from_value] |
|
|
256 |
neigh_results$n_to <- grp_table[neigh_results$to_value] |
|
|
257 |
|
|
|
258 |
# return |
|
|
259 |
neigh_results |
|
|
260 |
} |
|
|
261 |
|
|
|
262 |
#### |
|
|
263 |
# Hot Spot Analysis #### |
|
|
264 |
#### |
|
|
265 |
|
|
|
266 |
#' getHotSpotAnalysis |
|
|
267 |
#' |
|
|
268 |
#' Conduct hot spot detection |
|
|
269 |
#' |
|
|
270 |
#' @param object a VoltRon object |
|
|
271 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
272 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
273 |
#' @param method the statistical method of conducting hot spot analysis. Default is "Getis-Ord" |
|
|
274 |
#' @param features a set of features to be visualized, either from \link{vrFeatures} of raw or normalized data or columns of the \link{Metadata}. |
|
|
275 |
#' @param graph.type the type of graph to determine spatial neighborhood |
|
|
276 |
#' @param alpha.value the alpha value for the hot spot analysis test. Default is 0.01 |
|
|
277 |
#' @param norm if TRUE, the normalized data is used |
|
|
278 |
#' @param verbose verbose |
|
|
279 |
#' |
|
|
280 |
#' @importFrom Matrix rowSums |
|
|
281 |
#' @importFrom igraph as_adjacency_matrix |
|
|
282 |
#' @importFrom stats pnorm |
|
|
283 |
#' |
|
|
284 |
#' @export |
|
|
285 |
getHotSpotAnalysis <- function(object, assay = NULL, method = "Getis-Ord", features, graph.type = "delaunay", alpha.value = 0.01, norm = TRUE, verbose = TRUE){ |
|
|
286 |
|
|
|
287 |
# check object |
|
|
288 |
if(!inherits(object, "VoltRon")) |
|
|
289 |
stop("Please provide a VoltRon object!") |
|
|
290 |
|
|
|
291 |
# metadata |
|
|
292 |
sample.metadata <- SampleMetadata(object) |
|
|
293 |
metadata <- Metadata(object, assay = assay) |
|
|
294 |
|
|
|
295 |
# initiate metadata columns |
|
|
296 |
for(feat in features){ |
|
|
297 |
metadata[[paste0(feat,"_hotspot_flag")]] <- |
|
|
298 |
metadata[[paste0(feat,"_hotspot_pvalue")]] <- |
|
|
299 |
metadata[[paste0(feat,"_hotspot_stat")]] <- rep(NA, nrow(metadata)) |
|
|
300 |
} |
|
|
301 |
|
|
|
302 |
# get assay names |
|
|
303 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
304 |
|
|
|
305 |
# test for each assay |
|
|
306 |
neigh_results <- list() |
|
|
307 |
for(assy in assay_names){ |
|
|
308 |
|
|
|
309 |
# verbose |
|
|
310 |
if(verbose) |
|
|
311 |
message("Running Hot Spot Analysis with '", method, "' for '", assy, "'") |
|
|
312 |
|
|
|
313 |
# get related data |
|
|
314 |
graph <- vrGraph(object, assay = assy, graph.type = graph.type) |
|
|
315 |
adj_matrix <- igraph::as_adjacency_matrix(graph) |
|
|
316 |
cur_metadata <- subset_metadata(metadata, assays = assy) |
|
|
317 |
|
|
|
318 |
# get features |
|
|
319 |
data_features <- features[features %in% vrFeatures(object, assay = assy)] |
|
|
320 |
if(length(data_features) > 0){ |
|
|
321 |
normdata <- vrData(object, assay = assy, features = data_features, norm = norm) |
|
|
322 |
} |
|
|
323 |
|
|
|
324 |
# for each feature |
|
|
325 |
for(feat in features){ |
|
|
326 |
|
|
|
327 |
# Getis-Ord |
|
|
328 |
if(method == "Getis-Ord"){ |
|
|
329 |
|
|
|
330 |
# get feature |
|
|
331 |
if(feat %in% data_features){ |
|
|
332 |
if(inherits(normdata, "IterableMatrix")){ |
|
|
333 |
statistic <- as.matrix(normdata[feat,])[1,] |
|
|
334 |
} else { |
|
|
335 |
statistic <- normdata[feat,] |
|
|
336 |
} |
|
|
337 |
} else if(feat %in% colnames(cur_metadata)){ |
|
|
338 |
if(inherits(cur_metadata, "data.table")){ |
|
|
339 |
statistic <- cur_metadata[,get(names(cur_metadata)[which(colnames(cur_metadata) == feat)])] |
|
|
340 |
} else { |
|
|
341 |
statistic <- cur_metadata[,feat] |
|
|
342 |
} |
|
|
343 |
} else { |
|
|
344 |
stop("'", feat, "' is not found in either the data matrix or the metadata!") |
|
|
345 |
} |
|
|
346 |
|
|
|
347 |
# update statistics if not numeric |
|
|
348 |
if(!is.numeric(statistic)){ |
|
|
349 |
statistic <- Matrix::rowSums(adj_matrix) |
|
|
350 |
} |
|
|
351 |
|
|
|
352 |
# initiate getis ord |
|
|
353 |
getisord <- list() |
|
|
354 |
length(getisord) <- 3 |
|
|
355 |
names(getisord) <- c("hotspot_stat", "hotspot_pvalue", "hotspot_flag") |
|
|
356 |
|
|
|
357 |
# calculate getis ord |
|
|
358 |
n <- length(statistic) |
|
|
359 |
statistic <- statistic - (min(statistic)) ### correct for negative scores, correct for this later |
|
|
360 |
getisord_stat <- adj_matrix %*% statistic |
|
|
361 |
getisord_stat <- getisord_stat/(sum(statistic) - statistic) |
|
|
362 |
getisord[[1]] <- getisord_stat[,1] |
|
|
363 |
|
|
|
364 |
# calculate z score expectation and variance |
|
|
365 |
weight_sum <- Matrix::rowSums(adj_matrix) |
|
|
366 |
getisord_exp <- weight_sum/(n - 1) |
|
|
367 |
getisord_moment_1 <- (sum(statistic) - statistic)/(n - 1) |
|
|
368 |
getisord_moment_2 <- (sum(statistic^2) - statistic^2)/(n - 1) - getisord_moment_1^2 |
|
|
369 |
getisord_var <- weight_sum*(n - 1 - weight_sum)*getisord_moment_2 |
|
|
370 |
getisord_var <- getisord_var/((n-1)^2 *(n-2)*getisord_moment_1^2) |
|
|
371 |
|
|
|
372 |
# calculate z score |
|
|
373 |
getisord_zscore <- (getisord[[1]] - getisord_exp)/sqrt(getisord_var) |
|
|
374 |
getisord_zscore[is.nan(getisord_zscore)] <- NA |
|
|
375 |
# getisord[[2]] <- 1-stats::pnorm(getisord_zscore) |
|
|
376 |
getisord[[2]] <- p.adjust(1-stats::pnorm(getisord_zscore), method = "bonferroni") |
|
|
377 |
getisord[[3]] <- ifelse(getisord[[2]] < alpha.value, "hot", "cold") |
|
|
378 |
|
|
|
379 |
# get graph based hot spot filtering |
|
|
380 |
# at least some number of common neighbors should be hotspots |
|
|
381 |
|
|
|
382 |
# update metadata for features |
|
|
383 |
for(label in names(getisord)) |
|
|
384 |
cur_metadata[[paste(feat, label, sep = "_")]] <- getisord[[label]] |
|
|
385 |
} |
|
|
386 |
} |
|
|
387 |
|
|
|
388 |
# update metadata for assays |
|
|
389 |
if("id" %in% colnames(metadata)){ |
|
|
390 |
ind <- match(as.vector(cur_metadata$id), as.vector(metadata$id)) |
|
|
391 |
for(feat in features){ |
|
|
392 |
for(label in names(getisord)){ |
|
|
393 |
metadata_label <- paste(feat, label, sep = "_") |
|
|
394 |
metadata[[metadata_label]][ind] <- cur_metadata[[metadata_label]] |
|
|
395 |
object <- addMetadata(object, assay = assay, value = metadata[[metadata_label]], label = metadata_label) |
|
|
396 |
} |
|
|
397 |
} |
|
|
398 |
} else { |
|
|
399 |
for(feat in features){ |
|
|
400 |
for(label in names(getisord)){ |
|
|
401 |
metadata_label <- paste(feat, label, sep = "_") |
|
|
402 |
object <- addMetadata(object, assay = assay, value = metadata[[metadata_label]], label = metadata_label) |
|
|
403 |
} |
|
|
404 |
} |
|
|
405 |
} |
|
|
406 |
} |
|
|
407 |
|
|
|
408 |
# update metadata |
|
|
409 |
# Metadata(object, assay = assay) <- metadata |
|
|
410 |
|
|
|
411 |
# return |
|
|
412 |
return(object) |
|
|
413 |
} |
|
|
414 |
|
|
|
415 |
#### |
|
|
416 |
# Niche Analysis #### |
|
|
417 |
#### |
|
|
418 |
|
|
|
419 |
#' getNicheAssay |
|
|
420 |
#' |
|
|
421 |
#' Create Niche Assays |
|
|
422 |
#' |
|
|
423 |
#' @param object a VoltRon object |
|
|
424 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
425 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
426 |
#' @param label grouping label for Niche definition |
|
|
427 |
#' @param graph.type the type of graph to determine spatial neighborhood |
|
|
428 |
#' @param new_feature_name the name of the new feature set created for the niche assay. Default: "Niche" |
|
|
429 |
#' |
|
|
430 |
#' @importFrom igraph V V<- neighborhood |
|
|
431 |
#' @export |
|
|
432 |
getNicheAssay <- function(object, assay = NULL, label = NULL, graph.type = "delaunay", new_feature_name = "Niche"){ |
|
|
433 |
|
|
|
434 |
# get metadata |
|
|
435 |
sample.metadata <- SampleMetadata(object) |
|
|
436 |
metadata <- Metadata(object) |
|
|
437 |
|
|
|
438 |
# get assay names |
|
|
439 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
440 |
|
|
|
441 |
# get graph |
|
|
442 |
graph <- vrGraph(object, assay = assay_names, graph.type = graph.type) |
|
|
443 |
|
|
|
444 |
# get label |
|
|
445 |
cur_metadata <- subset_metadata(metadata, assays = assay_names) |
|
|
446 |
if(label %in% colnames(cur_metadata)){ |
|
|
447 |
label <- as.vector(cur_metadata[,label]) |
|
|
448 |
if(!is.null(rownames(cur_metadata))){ |
|
|
449 |
names(label) <- rownames(cur_metadata) |
|
|
450 |
} else { |
|
|
451 |
names(label) <- as.vector(cur_metadata$id) |
|
|
452 |
} |
|
|
453 |
} else { |
|
|
454 |
stop("'", label, "' is not found in the metadata!") |
|
|
455 |
} |
|
|
456 |
|
|
|
457 |
# get niche assay |
|
|
458 |
adj_matrix <- igraph::neighborhood(graph) |
|
|
459 |
unique_label <- unique(label) |
|
|
460 |
niche_counts <- vapply(adj_matrix, function(x){ |
|
|
461 |
table(factor(label[x], levels = unique_label)) |
|
|
462 |
}, numeric(length(na.omit(unique_label)))) |
|
|
463 |
colnames(niche_counts) <- igraph::V(graph)$name |
|
|
464 |
|
|
|
465 |
# add cell type mixtures as new feature set |
|
|
466 |
for(assy in assay_names){ |
|
|
467 |
cur_niche_counts <- niche_counts[,stringr::str_extract(colnames(niche_counts), "Assay[0-9]+") %in% assy] |
|
|
468 |
object <- addFeature(object, assay = assy, data = cur_niche_counts, feature_name = new_feature_name) |
|
|
469 |
} |
|
|
470 |
|
|
|
471 |
# return |
|
|
472 |
return(object) |
|
|
473 |
} |