|
a |
|
b/R/integration.R |
|
|
1 |
#### |
|
|
2 |
# Data Transfer #### |
|
|
3 |
#### |
|
|
4 |
|
|
|
5 |
#' transferData |
|
|
6 |
#' |
|
|
7 |
#' transfer data across assays |
|
|
8 |
#' |
|
|
9 |
#' @param object a VoltRon object |
|
|
10 |
#' @param from the name or class of assay whose data transfered to the second assay |
|
|
11 |
#' @param to the name or class of target assay where data is transfered to |
|
|
12 |
#' @param features the set of features from \link{vrFeatures} or metadata columns from \link{Metadata} that are transferred. |
|
|
13 |
#' Only one metadata feature can be transfered at a time. |
|
|
14 |
#' @param new_feature_name the name of the new feature set created from the source assay defined in \code{from} argument. |
|
|
15 |
#' |
|
|
16 |
#' @export |
|
|
17 |
transferData <- function(object, from = NULL, to = NULL, features = NULL, new_feature_name = NULL){ |
|
|
18 |
|
|
|
19 |
# assay list |
|
|
20 |
assaytypes <- c("ROI", "spot", "cell", "molecule", "tile") |
|
|
21 |
|
|
|
22 |
# get Assay IDs from Names and IDs |
|
|
23 |
from <- vrAssayNames(object, assay = from) |
|
|
24 |
to <- vrAssayNames(object, assay = to) |
|
|
25 |
|
|
|
26 |
# check assay names |
|
|
27 |
if(length(from) > 1 | length(to) > 1){ |
|
|
28 |
stop("For now, label transfer can only be accomplished across two assays") |
|
|
29 |
} |
|
|
30 |
|
|
|
31 |
# check if assays are in the same block |
|
|
32 |
sample.metadata <- SampleMetadata(object) |
|
|
33 |
from_assayclass <- sample.metadata[from, "Assay"] |
|
|
34 |
to_assayclass <- sample.metadata[to, "Assay"] |
|
|
35 |
samples <- sample.metadata[c(from, to), "Sample"] |
|
|
36 |
|
|
|
37 |
if(length(unique(samples)) > 1) |
|
|
38 |
stop("Selected assays have to be within the same sample block!") |
|
|
39 |
|
|
|
40 |
# get assay types |
|
|
41 |
to_object_type <- vrAssayTypes(object[[to]]) |
|
|
42 |
from_object_type <- vrAssayTypes(object[[from]]) |
|
|
43 |
|
|
|
44 |
if(which(assaytypes == to_object_type) > which(assaytypes == from_object_type) && from_object_type == "ROI"){ |
|
|
45 |
return(transferLabels(object = object, from = from, to = to, features = features)) |
|
|
46 |
} else { |
|
|
47 |
return(transferFeatureData(object = object, from = from, to = to, features = features, new_feature_name = new_feature_name)) |
|
|
48 |
} |
|
|
49 |
} |
|
|
50 |
|
|
|
51 |
#' transferFeatureData |
|
|
52 |
#' |
|
|
53 |
#' transfer feature data across assays |
|
|
54 |
#' |
|
|
55 |
#' @param object a VoltRon object |
|
|
56 |
#' @param from The ID of assay whose data transfer to the second assay |
|
|
57 |
#' @param to The ID of the target assay where data is transfered to |
|
|
58 |
#' @param features The set of data or metadata features that are transfered. Only one metadata feature can be transfered at a time. |
|
|
59 |
#' @param new_feature_name the name of the new feature set created from the source assay defined in \code{from}. |
|
|
60 |
#' |
|
|
61 |
#' @noRd |
|
|
62 |
transferFeatureData <- function(object, from = NULL, to = NULL, features = NULL, new_feature_name = NULL){ |
|
|
63 |
|
|
|
64 |
# get assays and metadata |
|
|
65 |
from_object <- object[[from]] |
|
|
66 |
from_metadata <- Metadata(object, assay = from) |
|
|
67 |
to_object <- object[[to]] |
|
|
68 |
to_metadata <- Metadata(object, assay = to) |
|
|
69 |
|
|
|
70 |
# get assay types |
|
|
71 |
to_object_type <- vrAssayTypes(to_object) |
|
|
72 |
from_object_type <- vrAssayTypes(from_object) |
|
|
73 |
|
|
|
74 |
# get transfer data type |
|
|
75 |
if(to_object_type == "spot"){ |
|
|
76 |
if(from_object_type == "cell"){ |
|
|
77 |
new_assay <- getSpotsFromCells(from_object, from_metadata, to_object, features = features) |
|
|
78 |
} |
|
|
79 |
} else if(to_object_type == "cell"){ |
|
|
80 |
if(from_object_type == "tile"){ |
|
|
81 |
new_assay <- getCellsFromTiles(from_object, from_metadata, to_object, features = features) |
|
|
82 |
} else if(from_object_type == "spot"){ |
|
|
83 |
new_assay <- getCellsFromSpots(from_object, from_metadata, to_object, features = features) |
|
|
84 |
} |
|
|
85 |
} else if(to_object_type == "ROI"){ |
|
|
86 |
if(from_object_type == "cell"){ |
|
|
87 |
new_assay <- getROIsFromCells(from_object, from_metadata, to_object, features = features) |
|
|
88 |
} |
|
|
89 |
} |
|
|
90 |
|
|
|
91 |
# add new feature set |
|
|
92 |
if(is.null(new_feature_name)){ |
|
|
93 |
new_feature_name <- paste(vrMainFeatureType(object, assay = from)$Feature, "pseudo", sep = "_") |
|
|
94 |
} |
|
|
95 |
object <- addFeature(object, assay = to, data = new_assay, feature_name = new_feature_name) |
|
|
96 |
|
|
|
97 |
# return |
|
|
98 |
object |
|
|
99 |
} |
|
|
100 |
|
|
|
101 |
#' transferLabels |
|
|
102 |
#' |
|
|
103 |
#' transfer labels across assays |
|
|
104 |
#' |
|
|
105 |
#' @param object a VoltRon object |
|
|
106 |
#' @param from The ID of assay whose data transfer to the second assay |
|
|
107 |
#' @param to The ID of the target assay where data is transfered to |
|
|
108 |
#' @param features The set of data or metadata features that are transferred. Only one metadata feature can be transferred at a time. |
|
|
109 |
#' |
|
|
110 |
#' @noRd |
|
|
111 |
transferLabels <- function(object, from = NULL, to = NULL, features = NULL){ |
|
|
112 |
|
|
|
113 |
# get assays and metadata |
|
|
114 |
from_object <- object[[from]] |
|
|
115 |
from_metadata <- Metadata(object, assay = from) |
|
|
116 |
to_object <- object[[to]] |
|
|
117 |
to_metadata <- Metadata(object, assay = to) |
|
|
118 |
|
|
|
119 |
# get assay types |
|
|
120 |
to_object_type <- vrAssayTypes(to_object) |
|
|
121 |
from_object_type <- vrAssayTypes(from_object) |
|
|
122 |
|
|
|
123 |
# get transfer data type |
|
|
124 |
if(from_object_type == "ROI" & to_object_type != "ROI"){ |
|
|
125 |
|
|
|
126 |
# transfer labels |
|
|
127 |
transferedLabelsMetadata <- transferLabelsFromROI(from_object, from_metadata, to_object, to_metadata, features = features) |
|
|
128 |
|
|
|
129 |
# update metadata |
|
|
130 |
# metadata <- Metadata(object, assay = to) |
|
|
131 |
# entities <- vrSpatialPoints(to_object) |
|
|
132 |
# if(is.numeric(value)){ |
|
|
133 |
# metadata[[features]] <- as.numeric(NA) |
|
|
134 |
# } else { |
|
|
135 |
# metadata[[features]] <- "" |
|
|
136 |
# } |
|
|
137 |
# if(is.null(rownames(metadata))){ |
|
|
138 |
# metadata[[features]][match(entities, as.vector(metadata$id))] <- value |
|
|
139 |
# } else { |
|
|
140 |
# metadata[entities,][[features]] <- value |
|
|
141 |
# } |
|
|
142 |
# |
|
|
143 |
# # transfer labels |
|
|
144 |
# Metadata(object, assay = to) <- metadata |
|
|
145 |
object <- addMetadata(object, assay = to, value = transferedLabelsMetadata[[features]], label = features) |
|
|
146 |
} |
|
|
147 |
|
|
|
148 |
# return |
|
|
149 |
object |
|
|
150 |
} |
|
|
151 |
|
|
|
152 |
|
|
|
153 |
#' getSpotsFromCells |
|
|
154 |
#' |
|
|
155 |
#' Generate Psuedo counts per spots and insert to as a separate image assay to the Visium object |
|
|
156 |
#' |
|
|
157 |
#' @param from_object The vrAssay object whose data transfer to the second assay |
|
|
158 |
#' @param from_metadata the metadata associated with \code{from_object} |
|
|
159 |
#' @param to_object The ID of the target vrAssay object where data is transfered to |
|
|
160 |
#' @param features the name of the metadata feature to transfer, if NULL, the rawdata will be transfered |
|
|
161 |
#' |
|
|
162 |
#' @importFrom dplyr %>% right_join |
|
|
163 |
#' @importFrom stats aggregate |
|
|
164 |
#' @importFrom magick image_data |
|
|
165 |
#' |
|
|
166 |
#' @noRd |
|
|
167 |
#' |
|
|
168 |
getSpotsFromCells <- function(from_object, from_metadata = NULL, to_object, features = NULL) { |
|
|
169 |
|
|
|
170 |
# get the spot radius of Visium spots |
|
|
171 |
Vis_spotradius <- vrAssayParams(to_object, param = "spot.radius") |
|
|
172 |
|
|
|
173 |
# get cell and spot coordinates |
|
|
174 |
message("Cell to Spot Distances \n") |
|
|
175 |
coords_spots <- vrCoordinates(to_object) |
|
|
176 |
coords_cells <- vrCoordinates(from_object) |
|
|
177 |
|
|
|
178 |
# get distances from cells to spots |
|
|
179 |
# alldist <- flexclust::dist2(coords_cells, coords_spots) |
|
|
180 |
# cell_to_spot <- FNN::get.knnx(coords_spots, coords_cells, k = 1) |
|
|
181 |
cell_to_spot <- knn_annoy(coords_spots, coords_cells, k = 1) |
|
|
182 |
names(cell_to_spot) <- c("nn.index", "nn.dist") |
|
|
183 |
cell_to_spot_nnid <- vrSpatialPoints(to_object)[cell_to_spot$nn.index[,1]] |
|
|
184 |
names(cell_to_spot_nnid) <- rownames(coords_cells) |
|
|
185 |
cell_to_spot_nndist <- cell_to_spot$nn.dist[,1] |
|
|
186 |
names(cell_to_spot_nndist) <- rownames(coords_cells) |
|
|
187 |
cell_to_spot_nnid <- cell_to_spot_nnid[cell_to_spot_nndist < Vis_spotradius] |
|
|
188 |
|
|
|
189 |
# find associated spot for each cell |
|
|
190 |
message("Find associated spots for each cell \n") |
|
|
191 |
cell_to_spot_id <- names(cell_to_spot_nnid) |
|
|
192 |
|
|
|
193 |
# get data |
|
|
194 |
if(is.null(features)){ |
|
|
195 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
196 |
} else { |
|
|
197 |
data_features <- features[features %in% vrFeatures(from_object)] |
|
|
198 |
metadata_features <- features[features %in% colnames(from_metadata)] |
|
|
199 |
if(length(data_features) > 0){ |
|
|
200 |
if(length(metadata_features) > 0){ |
|
|
201 |
stop("Data and metadata features cannot be transfered in the same time!") |
|
|
202 |
} else { |
|
|
203 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
204 |
raw_counts <- raw_counts[features,] |
|
|
205 |
message("There are ", length(setdiff(features, data_features)), " unknown features!") |
|
|
206 |
} |
|
|
207 |
} else { |
|
|
208 |
if(length(metadata_features) > 1){ |
|
|
209 |
stop("Only one metadata column can be transfered at a time") |
|
|
210 |
} else if(length(metadata_features) == 1) { |
|
|
211 |
raw_counts <- from_metadata[,metadata_features, drop = FALSE] |
|
|
212 |
rownames_raw_counts <- rownames(raw_counts) |
|
|
213 |
raw_counts <- dummy_cols(raw_counts, remove_first_dummy = FALSE) |
|
|
214 |
raw_counts <- raw_counts[,-1] |
|
|
215 |
raw_counts <- t(raw_counts) |
|
|
216 |
colnames(raw_counts) <- rownames_raw_counts |
|
|
217 |
rownames(raw_counts) <- gsub(paste0("^", metadata_features, "_"), "", rownames(raw_counts)) |
|
|
218 |
} else { |
|
|
219 |
stop("Features cannot be found in data and metadata!") |
|
|
220 |
} |
|
|
221 |
} |
|
|
222 |
} |
|
|
223 |
raw_counts <- raw_counts[,cell_to_spot_id, drop = FALSE] |
|
|
224 |
|
|
|
225 |
# pool cell counts to Spots |
|
|
226 |
message("Aggregating cell profiles in spots \n") |
|
|
227 |
aggregate_raw_counts <- stats::aggregate(t(as.matrix(raw_counts)), list(cell_to_spot_nnid), sum) |
|
|
228 |
aggregate_raw_counts <- data.frame(barcodes = vrSpatialPoints(to_object)) %>% dplyr::right_join(aggregate_raw_counts, by = c("barcodes" = "Group.1")) |
|
|
229 |
rownames(aggregate_raw_counts) <- aggregate_raw_counts$barcodes |
|
|
230 |
aggregate_raw_counts <- t(aggregate_raw_counts[,-1]) |
|
|
231 |
aggregate_raw_counts[is.na(aggregate_raw_counts)] <- 0 |
|
|
232 |
|
|
|
233 |
# return |
|
|
234 |
return(aggregate_raw_counts) |
|
|
235 |
} |
|
|
236 |
|
|
|
237 |
#' getSpotsFromCells |
|
|
238 |
#' |
|
|
239 |
#' Generate Psuedo counts per spots and insert to as a separate image assay to the Visium object |
|
|
240 |
#' |
|
|
241 |
#' @param from_object The vrAssay object whose data transfer to the second assay |
|
|
242 |
#' @param from_metadata the metadata associated with \code{from_object} |
|
|
243 |
#' @param to_object The ID of the target vrAssay object where data is transfered to |
|
|
244 |
#' @param features the name of the metadata feature to transfer, if NULL, the rawdata will be transfered |
|
|
245 |
#' |
|
|
246 |
#' @importFrom dplyr %>% right_join |
|
|
247 |
#' @importFrom stats aggregate |
|
|
248 |
#' @importFrom magick image_data |
|
|
249 |
#' |
|
|
250 |
#' @noRd |
|
|
251 |
#' |
|
|
252 |
getCellsFromSpots <- function(from_object, from_metadata = NULL, to_object, features = NULL) { |
|
|
253 |
|
|
|
254 |
# get the spot radius of Visium spots |
|
|
255 |
radius <- vrAssayParams(from_object, param = "nearestpost.distance")/2 |
|
|
256 |
|
|
|
257 |
# get cell and spot coordinates |
|
|
258 |
message("Spot to Cell Distances \n") |
|
|
259 |
coords_spots <- vrCoordinates(from_object) |
|
|
260 |
coords_cells <- vrCoordinates(to_object) |
|
|
261 |
|
|
|
262 |
# get distances from cells to spots |
|
|
263 |
spot_to_cell <- knn_annoy(coords_spots, coords_cells, k = 1) |
|
|
264 |
names(spot_to_cell) <- c("nn.index", "nn.dist") |
|
|
265 |
nnindex <- spot_to_cell$nn.index[,1] |
|
|
266 |
names_nnindex <- names(nnindex) |
|
|
267 |
nnindex <- vrSpatialPoints(from_object)[nnindex] |
|
|
268 |
names(nnindex) <- names_nnindex |
|
|
269 |
nndist <- spot_to_cell$nn.dist[,1] |
|
|
270 |
nnindex <- nnindex[nndist < radius] |
|
|
271 |
|
|
|
272 |
# find associated spot for each cell |
|
|
273 |
message("Find associated spot for each cell \n") |
|
|
274 |
|
|
|
275 |
# get data |
|
|
276 |
if(is.null(features)){ |
|
|
277 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
278 |
} else { |
|
|
279 |
data_features <- features[features %in% vrFeatures(from_object)] |
|
|
280 |
metadata_features <- features[features %in% colnames(from_metadata)] |
|
|
281 |
if(length(data_features) > 0){ |
|
|
282 |
if(length(metadata_features) > 0){ |
|
|
283 |
stop("Data and metadata features cannot be transfered in the same time!") |
|
|
284 |
} else { |
|
|
285 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
286 |
raw_counts <- raw_counts[features,] |
|
|
287 |
message("There are ", length(setdiff(features, data_features)), " unknown features!") |
|
|
288 |
} |
|
|
289 |
} else { |
|
|
290 |
if(length(metadata_features) > 1){ |
|
|
291 |
stop("Only one metadata column can be transfered at a time") |
|
|
292 |
} else if(length(metadata_features) == 1) { |
|
|
293 |
raw_counts <- from_metadata[,metadata_features, drop = FALSE] |
|
|
294 |
rownames_raw_counts <- rownames(raw_counts) |
|
|
295 |
raw_counts <- dummy_cols(raw_counts, remove_first_dummy = FALSE) |
|
|
296 |
raw_counts <- raw_counts[,-1] |
|
|
297 |
raw_counts <- t(raw_counts) |
|
|
298 |
colnames(raw_counts) <- rownames_raw_counts |
|
|
299 |
rownames(raw_counts) <- gsub(paste0("^", metadata_features, "_"), "", rownames(raw_counts)) |
|
|
300 |
} else { |
|
|
301 |
stop("Features cannot be found in data and metadata!") |
|
|
302 |
} |
|
|
303 |
} |
|
|
304 |
} |
|
|
305 |
raw_counts <- raw_counts[,nnindex, drop = FALSE] |
|
|
306 |
colnames(raw_counts) <- names(nnindex) |
|
|
307 |
|
|
|
308 |
# return |
|
|
309 |
return(raw_counts) |
|
|
310 |
} |
|
|
311 |
|
|
|
312 |
#' getROIsFromCells |
|
|
313 |
#' |
|
|
314 |
#' Generate Psuedo counts per ROIs and insert to as a separate image assay to the Visium object |
|
|
315 |
#' |
|
|
316 |
#' @param from_object The vrAssay object whose data transfer to the second assay |
|
|
317 |
#' @param from_metadata the metadata associated with \code{from_object} |
|
|
318 |
#' @param to_object The ID of the target vrAssay object where data is transfered to |
|
|
319 |
#' @param features the name of the metadata feature to transfer, if NULL, the rawdata will be transfered |
|
|
320 |
#' |
|
|
321 |
#' @importFrom dplyr %>% right_join |
|
|
322 |
#' @importFrom stats aggregate |
|
|
323 |
#' @importFrom magick image_data |
|
|
324 |
#' |
|
|
325 |
#' @noRd |
|
|
326 |
#' |
|
|
327 |
getROIsFromCells <- function(from_object, from_metadata = NULL, to_object, features = NULL) { |
|
|
328 |
|
|
|
329 |
# get cell and ROIs coordinates |
|
|
330 |
message("Cell to ROI Distances \n") |
|
|
331 |
segments_rois <- vrSegments(to_object) |
|
|
332 |
coords_cells <- vrCoordinates(from_object) |
|
|
333 |
|
|
|
334 |
# find associated spot for each cell |
|
|
335 |
message("Find associated ROIs for each cell \n") |
|
|
336 |
cell_to_roi_id <- NULL |
|
|
337 |
cell_to_roi_labelid <- NULL |
|
|
338 |
names_segments_rois <- names(segments_rois) |
|
|
339 |
for(i in seq_len(length(segments_rois))){ |
|
|
340 |
cur_segt <- segments_rois[[i]] |
|
|
341 |
if(ncol(cur_segt) > 3){ |
|
|
342 |
in.list <- point.in.circle(coords_cells[,1], coords_cells[,2], cur_segt$x, cur_segt$y, cur_segt$rx) |
|
|
343 |
} else { |
|
|
344 |
in.list <- sp::point.in.polygon(coords_cells[,1], coords_cells[,2], cur_segt$x, cur_segt$y) |
|
|
345 |
} |
|
|
346 |
in.list.cells <- rownames(coords_cells)[!!in.list] |
|
|
347 |
cell_to_roi_id <- c(cell_to_roi_id, in.list.cells) |
|
|
348 |
cell_to_roi_labelid <- c(cell_to_roi_labelid, rep(names_segments_rois[i], length(in.list.cells))) |
|
|
349 |
} |
|
|
350 |
|
|
|
351 |
# get data |
|
|
352 |
if(is.null(features)){ |
|
|
353 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
354 |
} else { |
|
|
355 |
data_features <- features[features %in% vrFeatures(from_object)] |
|
|
356 |
metadata_features <- features[features %in% colnames(from_metadata)] |
|
|
357 |
if(length(data_features) > 0){ |
|
|
358 |
if(length(metadata_features) > 0){ |
|
|
359 |
stop("Data and metadata features cannot be transfered in the same time!") |
|
|
360 |
} else { |
|
|
361 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
362 |
raw_counts <- raw_counts[features,] |
|
|
363 |
message("There are ", length(setdiff(features, data_features)), " unknown features!") |
|
|
364 |
} |
|
|
365 |
} else { |
|
|
366 |
if(length(metadata_features) > 1){ |
|
|
367 |
stop("Only one metadata column can be transfered at a time") |
|
|
368 |
} else if(length(metadata_features) == 1) { |
|
|
369 |
raw_counts <- from_metadata[,metadata_features, drop = FALSE] |
|
|
370 |
rownames_raw_counts <- rownames(raw_counts) |
|
|
371 |
raw_counts <- dummy_cols(raw_counts, remove_first_dummy = FALSE) |
|
|
372 |
raw_counts <- raw_counts[,-1] |
|
|
373 |
raw_counts <- t(raw_counts) |
|
|
374 |
colnames(raw_counts) <- rownames_raw_counts |
|
|
375 |
rownames(raw_counts) <- gsub(paste0("^", metadata_features, "_"), "", rownames(raw_counts)) |
|
|
376 |
} else { |
|
|
377 |
stop("Features cannot be found in data and metadata!") |
|
|
378 |
} |
|
|
379 |
} |
|
|
380 |
} |
|
|
381 |
raw_counts <- raw_counts[,cell_to_roi_id, drop = FALSE] |
|
|
382 |
|
|
|
383 |
# pool cell counts to Spots |
|
|
384 |
message("Aggregating cell profiles in spots \n") |
|
|
385 |
aggregate_raw_counts <- stats::aggregate(t(as.matrix(raw_counts)), list(cell_to_roi_labelid), sum) |
|
|
386 |
aggregate_raw_counts <- data.frame(barcodes = vrSpatialPoints(to_object)) %>% dplyr::right_join(aggregate_raw_counts, by = c("barcodes" = "Group.1")) |
|
|
387 |
rownames(aggregate_raw_counts) <- aggregate_raw_counts$barcodes |
|
|
388 |
aggregate_raw_counts <- t(aggregate_raw_counts[,-1]) |
|
|
389 |
aggregate_raw_counts[is.na(aggregate_raw_counts)] <- 0 |
|
|
390 |
|
|
|
391 |
# return |
|
|
392 |
return(aggregate_raw_counts) |
|
|
393 |
} |
|
|
394 |
|
|
|
395 |
getCellsFromTiles <- function(from_object, from_metadata = NULL, to_object, features = NULL, k = 5) { |
|
|
396 |
|
|
|
397 |
# get cell and spot coordinates |
|
|
398 |
message("Tile to Cell Distances \n") |
|
|
399 |
coords_cells <- vrCoordinates(to_object) |
|
|
400 |
coords_tiles <- vrCoordinates(from_object) |
|
|
401 |
|
|
|
402 |
# get distances from cells to spots |
|
|
403 |
# tile_to_cell <- FNN::get.knnx(coords_tiles, coords_cells, k = k) |
|
|
404 |
tile_to_cell <- knn_annoy(coords_tiles, coords_cells, k = k) |
|
|
405 |
names(tile_to_cell) <- c("nn.index", "nn.dist") |
|
|
406 |
tile_to_cell_nnid <- data.frame(id = rownames(coords_cells), tile_to_cell$nn.index) |
|
|
407 |
# tile_to_cell_nnid <- reshape2::melt(tile_to_cell_nnid, id.vars = "id") |
|
|
408 |
tile_to_cell_nnid <- data.table::melt(tile_to_cell_nnid, id.vars = "id") |
|
|
409 |
tile_id <- vrSpatialPoints(from_object)[tile_to_cell_nnid$value] |
|
|
410 |
tile_to_cell_nnid <- tile_to_cell_nnid$id |
|
|
411 |
|
|
|
412 |
# get data |
|
|
413 |
raw_counts <- vrData(from_object, norm = FALSE) |
|
|
414 |
raw_counts <- raw_counts[,tile_id] |
|
|
415 |
|
|
|
416 |
# pool cell counts to Spots |
|
|
417 |
message("Aggregating tile profiles in cells \n") |
|
|
418 |
aggregate_raw_counts <- stats::aggregate(t(as.matrix(raw_counts)), list(tile_to_cell_nnid), mean) |
|
|
419 |
aggregate_raw_counts <- data.frame(barcodes = vrSpatialPoints(to_object)) %>% dplyr::right_join(aggregate_raw_counts, by = c("barcodes" = "Group.1")) |
|
|
420 |
rownames(aggregate_raw_counts) <- aggregate_raw_counts$barcodes |
|
|
421 |
aggregate_raw_counts <- t(aggregate_raw_counts[,-1]) |
|
|
422 |
aggregate_raw_counts[is.na(aggregate_raw_counts)] <- 0 |
|
|
423 |
|
|
|
424 |
# return |
|
|
425 |
return(aggregate_raw_counts) |
|
|
426 |
} |
|
|
427 |
|
|
|
428 |
transferLabelsFromROI <- function(from_object, from_metadata = NULL, to_object, to_metadata = NULL, features = NULL) { |
|
|
429 |
|
|
|
430 |
# get ROI and other coordinates |
|
|
431 |
segments_roi <- vrSegments(from_object) |
|
|
432 |
coords <- vrCoordinates(to_object) |
|
|
433 |
spatialpoints <- rownames(coords) |
|
|
434 |
|
|
|
435 |
# check if all features are in from_metadata |
|
|
436 |
if(!all(features %in% colnames(from_metadata))){ |
|
|
437 |
stop("Some features are not found in the ROI metadata!") |
|
|
438 |
} |
|
|
439 |
|
|
|
440 |
# annotate points in the to object |
|
|
441 |
for(feat in features){ |
|
|
442 |
|
|
|
443 |
# get from metadata labels |
|
|
444 |
feat_labels <- from_metadata[,feat] |
|
|
445 |
|
|
|
446 |
# get to metadata |
|
|
447 |
new_label <- rep("undefined", length(spatialpoints)) |
|
|
448 |
names(new_label) <- spatialpoints |
|
|
449 |
|
|
|
450 |
for(i in seq_len(length(segments_roi))){ |
|
|
451 |
cur_poly <- segments_roi[[i]][,c("x","y")] |
|
|
452 |
in.list <- sp::point.in.polygon(coords[,1], coords[,2], cur_poly[,1], cur_poly[,2]) |
|
|
453 |
new_label[rownames(coords)[!!in.list]] <- feat_labels[i] |
|
|
454 |
} |
|
|
455 |
|
|
|
456 |
to_metadata[[feat]] <- new_label |
|
|
457 |
} |
|
|
458 |
|
|
|
459 |
|
|
|
460 |
# return label |
|
|
461 |
return(to_metadata) |
|
|
462 |
} |
|
|
463 |
|
|
|
464 |
#### |
|
|
465 |
# Embedding #### |
|
|
466 |
#### |
|
|
467 |
|
|
|
468 |
getJointPCA <- function(object, assay.1 = NULL, assay.2 = NULL, dims = 30, seed = 1, ...){ |
|
|
469 |
|
|
|
470 |
# get assay names |
|
|
471 |
assay <- assay.1 |
|
|
472 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
473 |
|
|
|
474 |
# if there are features of a VoltRon object, then get variable features too |
|
|
475 |
assay_features <- vrFeatures(object, assay = assay) |
|
|
476 |
if(length(assay_features) > 0) { |
|
|
477 |
features <- getVariableFeatures(object, assay = assay) |
|
|
478 |
vrMainAssay(object) <- object@sample.metadata[assay, "Assay"] |
|
|
479 |
object_subset <- subsetVoltRon(object, features = features) |
|
|
480 |
vrMainAssay(object_subset) <- vrMainAssay(object) |
|
|
481 |
if(dims > length(features)){ |
|
|
482 |
message("Requested more PC dimensions than existing features: dims = length(features) now!") |
|
|
483 |
dims <- length(features) |
|
|
484 |
} |
|
|
485 |
} else { |
|
|
486 |
object_subset <- object |
|
|
487 |
} |
|
|
488 |
|
|
|
489 |
# set seed |
|
|
490 |
set.seed(seed) |
|
|
491 |
|
|
|
492 |
# get PCA embedding |
|
|
493 |
normdata.1 <- vrData(object_subset, assay = assay, norm = TRUE) |
|
|
494 |
scale.data <- apply(normdata.1, 1, scale) |
|
|
495 |
pr.data <- irlba::prcomp_irlba(scale.data, n=dims, center=colMeans(scale.data)) |
|
|
496 |
pr.data.1 <- pr.data$x |
|
|
497 |
colnames(pr.data.1) <- paste0("PC", seq_len(dims)) |
|
|
498 |
rownames(pr.data.1) <- colnames(normdata.1) |
|
|
499 |
normdata.1 <- normdata.1/(pr.data$sdev[1]^2) |
|
|
500 |
|
|
|
501 |
# get assay names |
|
|
502 |
assay <- assay.2 |
|
|
503 |
assay_names <- vrAssayNames(object, assay = assay) |
|
|
504 |
|
|
|
505 |
# if there are features of a VoltRon object, then get variable features too |
|
|
506 |
assay_features <- vrFeatures(object, assay = assay) |
|
|
507 |
if(length(assay_features) > 0) { |
|
|
508 |
features <- getVariableFeatures(object, assay = assay) |
|
|
509 |
vrMainAssay(object) <- object@sample.metadata[assay, "Assay"] |
|
|
510 |
object_subset <- subsetVoltRon(object, features = features) |
|
|
511 |
vrMainAssay(object_subset) <- vrMainAssay(object) |
|
|
512 |
if(dims > length(features)){ |
|
|
513 |
message("Requested more PC dimensions than existing features: dims = length(features) now!") |
|
|
514 |
dims <- length(features) |
|
|
515 |
} |
|
|
516 |
} else { |
|
|
517 |
object_subset <- object |
|
|
518 |
} |
|
|
519 |
|
|
|
520 |
# get PCA embedding |
|
|
521 |
normdata.2 <- vrData(object_subset, assay = assay, norm = TRUE) |
|
|
522 |
scale.data <- apply(normdata.2, 1, scale) |
|
|
523 |
pr.data <- irlba::prcomp_irlba(scale.data, n=dims, center=colMeans(scale.data)) |
|
|
524 |
pr.data.2 <- pr.data$x |
|
|
525 |
colnames(pr.data.2) <- paste0("PC", seq_len(dims)) |
|
|
526 |
rownames(pr.data.2) <- colnames(normdata.2) |
|
|
527 |
normdata.2 <- normdata.2/(pr.data$sdev[1]^2) |
|
|
528 |
|
|
|
529 |
# get joint PCA |
|
|
530 |
normdata <- rbind(normdata.1, normdata.2) |
|
|
531 |
scale.data <- apply(normdata, 1, scale) |
|
|
532 |
pr.data <- irlba::prcomp_irlba(scale.data, n=dims, center=colMeans(scale.data)) |
|
|
533 |
prsdev <- pr.data$sdev |
|
|
534 |
pr.data <- pr.data$x |
|
|
535 |
colnames(pr.data) <- paste0("PC", seq_len(dims)) |
|
|
536 |
rownames(pr.data) <- colnames(normdata) |
|
|
537 |
normdata <- normdata/(prsdev[1]^2) |
|
|
538 |
|
|
|
539 |
# set Embeddings |
|
|
540 |
vrEmbeddings(object, type = "pca_joint", assay = assay.1, ...) <- pr.data |
|
|
541 |
vrEmbeddings(object, type = "pca_joint", assay = assay.2, ...) <- pr.data |
|
|
542 |
|
|
|
543 |
# return |
|
|
544 |
return(object) |
|
|
545 |
} |