|
a |
|
b/R/differentialexpression.R |
|
|
1 |
#### |
|
|
2 |
# ROI DE Analysis #### |
|
|
3 |
#### |
|
|
4 |
|
|
|
5 |
#' getDiffExp |
|
|
6 |
#' |
|
|
7 |
#' Get differential expression with DESeq2 |
|
|
8 |
#' |
|
|
9 |
#' @param object a VoltRon object |
|
|
10 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
11 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
12 |
#' @param group.by the categorical variable from metadata to get differentially expressed features across |
|
|
13 |
#' @param group.base Optional, the base category in \code{group.by} which is used as control group |
|
|
14 |
#' @param covariates the covariate variable for the design formula |
|
|
15 |
#' @param method the method for DE analysis, e.g. DESeq2 |
|
|
16 |
#' |
|
|
17 |
#' @export |
|
|
18 |
#' |
|
|
19 |
getDiffExp <- function(object, assay = NULL, group.by, group.base = NULL, covariates = NULL, method = "DESeq2"){ |
|
|
20 |
|
|
|
21 |
# get data and metadata |
|
|
22 |
data <- vrData(object, assay = assay) |
|
|
23 |
metadata <- Metadata(object, assay = assay) |
|
|
24 |
|
|
|
25 |
# check groups |
|
|
26 |
if(group.by %in% colnames(metadata)){ |
|
|
27 |
if(!is.null(group.base)){ |
|
|
28 |
if(!group.base %in% unique(as.vector(metadata[[group.by]]))) |
|
|
29 |
stop("Please specify a group that is included in the group.by column of metadata to define the base group!") |
|
|
30 |
} else{ |
|
|
31 |
group.base <- levels(factor(as.vector(metadata[[group.by]])))[1] |
|
|
32 |
} |
|
|
33 |
} else { |
|
|
34 |
stop("Column ", group.by, " cannot be found in metadata!") |
|
|
35 |
} |
|
|
36 |
|
|
|
37 |
# select a method |
|
|
38 |
results <- |
|
|
39 |
switch(method, |
|
|
40 |
DESeq2 = { |
|
|
41 |
getDiffExpDESeq2(data, metadata, group.by = group.by, group.base = group.base, covariates = covariates) |
|
|
42 |
}) |
|
|
43 |
|
|
|
44 |
# return |
|
|
45 |
return(results) |
|
|
46 |
} |
|
|
47 |
|
|
|
48 |
#' getDiffExpDESeq2 |
|
|
49 |
#' |
|
|
50 |
#' @param data the raw data set |
|
|
51 |
#' @param metadata the metadata |
|
|
52 |
#' @param group.by the categorical variable from metadata to get differentially expressed features across |
|
|
53 |
#' @param group.base Optional, the base category in \code{group.by} which is used as control group |
|
|
54 |
#' @param covariates the covariate variable for the design formula |
|
|
55 |
#' |
|
|
56 |
#' @importFrom stats as.formula |
|
|
57 |
#' |
|
|
58 |
#' @noRd |
|
|
59 |
getDiffExpDESeq2 <- function(data, metadata, group.by, group.base = NULL, covariates){ |
|
|
60 |
|
|
|
61 |
if (!requireNamespace('DESeq2')) |
|
|
62 |
stop("Please install DESeq2 package to find differentially expressed genes with DESeq2 method") |
|
|
63 |
|
|
|
64 |
# experimental design for deseq2 |
|
|
65 |
|
|
|
66 |
# make formula |
|
|
67 |
if(is.null(covariates)){ |
|
|
68 |
group.by.data <- as.vector(metadata[[group.by]]) |
|
|
69 |
uniq_groups <- unique(group.by.data) |
|
|
70 |
if(!is.null(group.base)) |
|
|
71 |
uniq_groups <- c(group.base, uniq_groups[!uniq_groups %in% group.base]) |
|
|
72 |
group.by.data <- factor(group.by.data, levels = uniq_groups) |
|
|
73 |
colData <- data.frame(group.by.data) |
|
|
74 |
colnames(colData) <- c(group.by, covariates) |
|
|
75 |
deseq2.formula <- stats::as.formula(paste0("~", group.by)) |
|
|
76 |
} else { |
|
|
77 |
if(all(covariates %in% colnames(metadata))){ |
|
|
78 |
design.data <- metadata[,c(group.by, covariates)] |
|
|
79 |
uniq_groups <- unique(design.data[[group.by]]) |
|
|
80 |
if(is.null(group.base)) |
|
|
81 |
uniq_groups <- c(group.base, uniq_groups[!uniq_groups %in% group.base]) |
|
|
82 |
group.by.data <- factor(design.data[[group.by]], levels = uniq_groups) |
|
|
83 |
design.data[[group.by]] <- group.by.data |
|
|
84 |
colData <- data.frame(design.data) |
|
|
85 |
colnames(colData) <- c(group.by, covariates) |
|
|
86 |
deseq2.formula <- stats::as.formula(paste0("~", group.by, " + ", paste(covariates, collapse = " + "))) |
|
|
87 |
} else { |
|
|
88 |
stop("Columns ", paste(covariates, collapse = ", "), " cannot be found in metadata!") |
|
|
89 |
} |
|
|
90 |
} |
|
|
91 |
|
|
|
92 |
# run DESeq2 |
|
|
93 |
data <- as.matrix(as(data, "dgCMatrix")) |
|
|
94 |
dds <- DESeq2::DESeqDataSetFromMatrix(countData = data, colData = colData, design = deseq2.formula) |
|
|
95 |
dds <- DESeq2::DESeq(dds) |
|
|
96 |
|
|
|
97 |
all_results <- NULL |
|
|
98 |
for(i in seq_len(length(uniq_groups)-1)){ |
|
|
99 |
for(j in (i+1):length(uniq_groups)){ |
|
|
100 |
comparison <- c(group.by, uniq_groups[i], uniq_groups[j]) |
|
|
101 |
cur_results <- as.data.frame(DESeq2::results(dds, comparison)) |
|
|
102 |
cur_results <- data.frame(cur_results, gene = rownames(cur_results), comparison = paste(comparison, collapse = "_")) |
|
|
103 |
all_results <- rbind(all_results, cur_results) |
|
|
104 |
} |
|
|
105 |
} |
|
|
106 |
|
|
|
107 |
# return |
|
|
108 |
return(all_results) |
|
|
109 |
} |