|
a |
|
b/R/conversion.R |
|
|
1 |
#### |
|
|
2 |
# Seurat #### |
|
|
3 |
#### |
|
|
4 |
|
|
|
5 |
#' @param type the spatial data type of Seurat object: "image" or "spatial" |
|
|
6 |
#' @param assay_name the assay name |
|
|
7 |
#' @param verbose verbose |
|
|
8 |
#' @param ... Additional parameter passed to \link{formVoltRon} |
|
|
9 |
#' |
|
|
10 |
#' @rdname as.VoltRon |
|
|
11 |
#' @method as.VoltRon Seurat |
|
|
12 |
#' |
|
|
13 |
#' @importFrom stringr str_replace str_extract |
|
|
14 |
#' @export |
|
|
15 |
#' |
|
|
16 |
as.VoltRon.Seurat <- function(object, type = c("image", "spatial"), assay_name = NULL, verbose = TRUE, ...){ |
|
|
17 |
|
|
|
18 |
# check Seurat package |
|
|
19 |
if(!requireNamespace('Seurat')) |
|
|
20 |
stop("Please install Seurat package for using Seurat objects!: install.packages('Seurat')") |
|
|
21 |
|
|
|
22 |
# raw counts |
|
|
23 |
rawdata <- SeuratObject::LayerData(object, assay = Seurat::DefaultAssay(object), layer = "counts") |
|
|
24 |
|
|
|
25 |
# metadata |
|
|
26 |
metadata <- object@meta.data |
|
|
27 |
|
|
|
28 |
# embeddings |
|
|
29 |
if(length(object@reductions) > 0){ |
|
|
30 |
embeddings_flag <- TRUE |
|
|
31 |
embedding_list <- sapply(object@reductions, Seurat::Embeddings, USE.NAMES = TRUE) |
|
|
32 |
} else { |
|
|
33 |
embeddings_flag <- FALSE |
|
|
34 |
} |
|
|
35 |
|
|
|
36 |
# image |
|
|
37 |
voltron_list <- list() |
|
|
38 |
spatialobjectlist <- object@images |
|
|
39 |
fov_names <- names(spatialobjectlist) |
|
|
40 |
if(length(spatialobjectlist) > 0){ |
|
|
41 |
for(fn in fov_names){ |
|
|
42 |
|
|
|
43 |
# message |
|
|
44 |
if(verbose) |
|
|
45 |
message("Converting FOV: ", fn, " ...") |
|
|
46 |
|
|
|
47 |
# image object |
|
|
48 |
spatialobject <- spatialobjectlist[[fn]] |
|
|
49 |
|
|
|
50 |
# cells |
|
|
51 |
cells <- Seurat::Cells(spatialobject) |
|
|
52 |
cells_nopostfix <- gsub("_Assay[0-9]+$", "", cells) |
|
|
53 |
|
|
|
54 |
# count |
|
|
55 |
cur_rawdata <- as.matrix(rawdata[,cells]) |
|
|
56 |
colnames(cur_rawdata) <- cells_nopostfix |
|
|
57 |
|
|
|
58 |
# metadata |
|
|
59 |
cur_metadata <- metadata[cells,] |
|
|
60 |
rownames(cur_metadata) <- cells_nopostfix |
|
|
61 |
|
|
|
62 |
# coords |
|
|
63 |
coords <- as.matrix(Seurat::GetTissueCoordinates(spatialobject))[,seq_len(2)] |
|
|
64 |
coords <- apply(coords, 2, as.numeric) |
|
|
65 |
colnames(coords) <- c("x", "y") |
|
|
66 |
rownames(coords) <- cells_nopostfix |
|
|
67 |
|
|
|
68 |
# form voltron |
|
|
69 |
params <- list() |
|
|
70 |
assay.type <- "cell" |
|
|
71 |
assay_name <- "FOV" |
|
|
72 |
voltron_list[[fn]] <- formVoltRon(data = cur_rawdata, metadata = cur_metadata, coords = coords, main.assay = assay_name, params = params, assay.type = assay.type, sample_name = fn, ...) |
|
|
73 |
|
|
|
74 |
# embeddings |
|
|
75 |
spatialpoints <- vrSpatialPoints(voltron_list[[fn]]) |
|
|
76 |
spatialpoints_nopostfix <- stringr::str_replace(spatialpoints, "_Assay[0-9]+$", "") |
|
|
77 |
spatialpoints_assay <- stringr::str_extract(spatialpoints, "Assay[0-9]+$") |
|
|
78 |
if(embeddings_flag){ |
|
|
79 |
for(embed_name in names(embedding_list)){ |
|
|
80 |
cur_embedding <- embedding_list[[embed_name]][cells,] |
|
|
81 |
rownames(cur_embedding) <- spatialpoints |
|
|
82 |
vrEmbeddings(voltron_list[[fn]], type = embed_name) <- cur_embedding |
|
|
83 |
} |
|
|
84 |
} |
|
|
85 |
} |
|
|
86 |
|
|
|
87 |
# merge object |
|
|
88 |
if(length(voltron_list) > 1){ |
|
|
89 |
if(verbose) |
|
|
90 |
message("Merging object ...") |
|
|
91 |
vrobject <- merge(voltron_list[[1]], voltron_list[-1]) |
|
|
92 |
} else { |
|
|
93 |
vrobject <- voltron_list[[1]] |
|
|
94 |
} |
|
|
95 |
} else{ |
|
|
96 |
image <- NULL |
|
|
97 |
stop("There are no spatial objects available in this Seurat object") |
|
|
98 |
} |
|
|
99 |
|
|
|
100 |
return(vrobject) |
|
|
101 |
} |
|
|
102 |
|
|
|
103 |
#' as.Seurat |
|
|
104 |
#' |
|
|
105 |
#' Converting a VoltRon object into a Seurat object |
|
|
106 |
#' |
|
|
107 |
#' @param object a VoltRon object |
|
|
108 |
#' @param cell.assay the name(type) of the cell assay to be converted |
|
|
109 |
#' @param molecule.assay the name(type) of the molecule assay to be added to the cell assay in Seurat object |
|
|
110 |
#' @param image_key the name (or prefix) of the image(s) |
|
|
111 |
#' @param type the spatial data type of Seurat object: "image" or "spatial" |
|
|
112 |
#' @param reg if TRUE, registered coordinates will be used |
|
|
113 |
#' |
|
|
114 |
#' @rdname as.Seurat |
|
|
115 |
#' |
|
|
116 |
#' @importFrom dplyr bind_cols |
|
|
117 |
#' @importFrom stringr str_replace |
|
|
118 |
#' |
|
|
119 |
#' @export |
|
|
120 |
as.Seurat <- function(object, cell.assay = NULL, molecule.assay = NULL, image_key = "fov", type = c("image", "spatial"), reg = FALSE){ |
|
|
121 |
|
|
|
122 |
# sample metadata |
|
|
123 |
sample_metadata <- SampleMetadata(object) |
|
|
124 |
|
|
|
125 |
# check Seurat package |
|
|
126 |
if(!requireNamespace('Seurat')) |
|
|
127 |
stop("Please install Seurat package for using Seurat objects") |
|
|
128 |
|
|
|
129 |
# check the number of assays |
|
|
130 |
if(is.null(cell.assay)){ |
|
|
131 |
if(length(unique(sample_metadata[["Assay"]])) > 1){ |
|
|
132 |
stop("You can only convert a single VoltRon assay into a Seurat object!") |
|
|
133 |
} else { |
|
|
134 |
cell.assay <- sample_metadata[["Assay"]] |
|
|
135 |
} |
|
|
136 |
} else { |
|
|
137 |
vrMainAssay(object) <- cell.assay |
|
|
138 |
} |
|
|
139 |
|
|
|
140 |
# check the number of assays |
|
|
141 |
if(unique(vrAssayTypes(object, assay = cell.assay)) %in% c("spot","ROI")) { |
|
|
142 |
stop("Conversion of Spot or ROI assays into Seurat is not yet permitted!") |
|
|
143 |
} |
|
|
144 |
|
|
|
145 |
# data |
|
|
146 |
data <- vrData(object, assay = cell.assay, norm = FALSE) |
|
|
147 |
|
|
|
148 |
# metadata |
|
|
149 |
metadata <- Metadata(object, assay = cell.assay) |
|
|
150 |
|
|
|
151 |
# Seurat object |
|
|
152 |
seu <- Seurat::CreateSeuratObject(counts = data, meta.data = metadata, assay = cell.assay) |
|
|
153 |
|
|
|
154 |
# add embeddings |
|
|
155 |
if(length(vrEmbeddingNames(object)) > 0){ |
|
|
156 |
for(embd in vrEmbeddingNames(object)){ |
|
|
157 |
embd_data <- vrEmbeddings(object, type = embd) |
|
|
158 |
colnames(embd_data) <- paste0(embd, seq_len(ncol(embd_data))) |
|
|
159 |
seu[[embd]] <- Seurat::CreateDimReducObject(embd_data, key = paste0(embd, "_"), assay = Seurat::DefaultAssay(seu)) |
|
|
160 |
} |
|
|
161 |
} |
|
|
162 |
|
|
|
163 |
# get image objects for each assay |
|
|
164 |
for(assy in vrAssayNames(object)){ |
|
|
165 |
assay_object <- object[[assy]] |
|
|
166 |
if(type == "image"){ |
|
|
167 |
coords <- vrCoordinates(assay_object, reg = reg) |
|
|
168 |
image.data <- list(centroids = SeuratObject::CreateCentroids(coords[,c("x", "y")])) |
|
|
169 |
if(!is.null(molecule.assay)){ |
|
|
170 |
assay_metadata <- sample_metadata[assy,] |
|
|
171 |
molecule.assay.id <- rownames(sample_metadata)[sample_metadata$Assay == molecule.assay & (assay_metadata$Layer == sample_metadata$Layer & assay_metadata$Sample == sample_metadata$Sample)] |
|
|
172 |
if(length(molecule.assay.id) > 0){ |
|
|
173 |
molecules_metadata <- Metadata(object, assay = molecule.assay.id) |
|
|
174 |
molecules_coords <- vrCoordinates(object, assay = molecule.assay.id, reg = reg) |
|
|
175 |
molecules <- dplyr::bind_cols(molecules_metadata, molecules_coords) |
|
|
176 |
rownames(molecules) <- stringr::str_replace(rownames(molecules), pattern = molecule.assay.id, replacement = assy) |
|
|
177 |
colnames(molecules)[colnames(molecules) %in% "feature_name"] <- "gene" |
|
|
178 |
} |
|
|
179 |
} else { |
|
|
180 |
molecules <- NULL |
|
|
181 |
} |
|
|
182 |
image.data <- SeuratObject::CreateFOV(coords = image.data, type = c("centroids"), molecules = molecules, assay = cell.assay) |
|
|
183 |
image <- paste0(image_key, assy) |
|
|
184 |
seu[[image]] <- image.data |
|
|
185 |
} else if(type == "spatial"){ |
|
|
186 |
stop("Currently VoltRon does not support converting into Spatial-type (e.g. VisiumV1) Spatial objects!") |
|
|
187 |
} |
|
|
188 |
} |
|
|
189 |
|
|
|
190 |
|
|
|
191 |
# return |
|
|
192 |
seu |
|
|
193 |
} |
|
|
194 |
|
|
|
195 |
#### |
|
|
196 |
# AnnData #### |
|
|
197 |
#### |
|
|
198 |
|
|
|
199 |
#' convertAnnDataToVoltRon |
|
|
200 |
#' |
|
|
201 |
#' converting AnnData h5ad files to VoltRon objects |
|
|
202 |
#' |
|
|
203 |
#' @param file h5ad file |
|
|
204 |
#' @param AssayID the ID assays in the h5ad file |
|
|
205 |
#' @param ... additional parameters passed to \link{formVoltRon} |
|
|
206 |
#' |
|
|
207 |
#' @export |
|
|
208 |
#' |
|
|
209 |
convertAnnDataToVoltRon <- function(file, AssayID = NULL, ...){ |
|
|
210 |
|
|
|
211 |
# check anndata package |
|
|
212 |
if(!requireNamespace('anndata')) |
|
|
213 |
stop("Please install anndata package!: install.packages('anndata')") |
|
|
214 |
|
|
|
215 |
# read anndata |
|
|
216 |
adata <- anndata::read_h5ad(file) |
|
|
217 |
|
|
|
218 |
# raw counts |
|
|
219 |
rawdata <- as.matrix(t(adata$X)) |
|
|
220 |
|
|
|
221 |
# metadata |
|
|
222 |
metadata <- adata$obs |
|
|
223 |
|
|
|
224 |
# coordinates and subcellular |
|
|
225 |
if(is.null(AssayID)){ |
|
|
226 |
coords <- data.frame(adata$obsm, row.names = colnames(rawdata)) |
|
|
227 |
coords <- apply(coords, 2, as.numeric) |
|
|
228 |
colnames(coords) <- c("x", "y") |
|
|
229 |
|
|
|
230 |
# scale coordinates and assay.type |
|
|
231 |
params <- list() |
|
|
232 |
assay.type <- "cell" |
|
|
233 |
assay_name <- "Xenium" |
|
|
234 |
|
|
|
235 |
# create VoltRon |
|
|
236 |
object <- formVoltRon(rawdata, metadata, image = NULL, coords, main.assay = assay_name, params = params, assay.type = assay.type, ...) |
|
|
237 |
|
|
|
238 |
# return |
|
|
239 |
return(object) |
|
|
240 |
} else { |
|
|
241 |
} |
|
|
242 |
} |
|
|
243 |
|
|
|
244 |
#' as.AnnData |
|
|
245 |
#' |
|
|
246 |
#' Converting a VoltRon object into a AnnData (.h5ad) object |
|
|
247 |
#' |
|
|
248 |
#' @param object a VoltRon object |
|
|
249 |
#' @param assay assay name (exp: Assay1) or assay class (exp: Visium, Xenium), see \link{SampleMetadata}. |
|
|
250 |
#' if NULL, the default assay will be used, see \link{vrMainAssay}. |
|
|
251 |
#' @param file the name of the h5ad file. |
|
|
252 |
#' @param flip_coordinates if TRUE, the spatial coordinates (including segments) will be flipped. |
|
|
253 |
#' @param method the package to use for conversion: "anndataR" or "anndata". |
|
|
254 |
#' @param create.ometiff should an ometiff file be generated of default image of the object |
|
|
255 |
#' @param python.path the path to the python binary, otherwise either \code{basilisk} package is used or \code{getOption("voltron.python.path")} should be not NULL. |
|
|
256 |
#' @param ... additional parameters passed to \link{vrImages}. |
|
|
257 |
#' |
|
|
258 |
#' @details |
|
|
259 |
#' This function converts a VoltRon object into an AnnData object (.h5ad file). It extracts assay data, |
|
|
260 |
#' spatial coordinates, and optionally flips coordinates. Images associated with the assay can be included in the |
|
|
261 |
#' resulting AnnData file, with additional customization parameters like channel, scale.perc. |
|
|
262 |
#' |
|
|
263 |
#' @rdname as.AnnData |
|
|
264 |
#' |
|
|
265 |
#' @importFrom stringr str_extract |
|
|
266 |
#' @importFrom magick image_data |
|
|
267 |
#' |
|
|
268 |
#' @export |
|
|
269 |
as.AnnData <- function(object, |
|
|
270 |
file, |
|
|
271 |
assay = NULL, |
|
|
272 |
flip_coordinates = FALSE, |
|
|
273 |
method = "anndata", |
|
|
274 |
create.ometiff = FALSE, |
|
|
275 |
python.path = NULL, |
|
|
276 |
...) { |
|
|
277 |
|
|
|
278 |
# Check the number of assays |
|
|
279 |
if (is.null(assay)) { |
|
|
280 |
if (length(unique(SampleMetadata(object)[["Assay"]])) > 1) { |
|
|
281 |
stop("You can only convert a single VoltRon assay into a Anndata object!") |
|
|
282 |
} else { |
|
|
283 |
assay <- SampleMetadata(object)[["Assay"]] |
|
|
284 |
} |
|
|
285 |
} |
|
|
286 |
assay <- vrAssayNames(object, assay = assay) |
|
|
287 |
|
|
|
288 |
# Check the number of assays |
|
|
289 |
if (unique(vrAssayTypes(object, assay = assay)) %in% c("ROI", "tile")) { |
|
|
290 |
stop("Conversion of tile or ROI assays into Anndata is not permitted!") |
|
|
291 |
} |
|
|
292 |
|
|
|
293 |
# Data |
|
|
294 |
data <- vrData(object, assay = assay, norm = FALSE) |
|
|
295 |
|
|
|
296 |
# Metadata |
|
|
297 |
metadata <- Metadata(object, assay = assay) |
|
|
298 |
metadata[["library_id"]] <- stringr::str_extract(rownames(metadata), "_Assay[0-9]+$") |
|
|
299 |
metadata[["library_id"]] <- gsub("^_", "", metadata[["library_id"]]) |
|
|
300 |
|
|
|
301 |
# Embeddings |
|
|
302 |
obsm <- list() |
|
|
303 |
if (length(vrEmbeddingNames(object, assay = assay)) > 0) { |
|
|
304 |
for (embed_name in vrEmbeddingNames(object, assay = assay)) { |
|
|
305 |
obsm[[embed_name]] <- vrEmbeddings(object, assay = assay, type = embed_name) |
|
|
306 |
} |
|
|
307 |
} |
|
|
308 |
|
|
|
309 |
# Flip coordinates |
|
|
310 |
if (flip_coordinates) { |
|
|
311 |
object <- flipCoordinates(object, assay = assay) |
|
|
312 |
} |
|
|
313 |
|
|
|
314 |
# Coordinates |
|
|
315 |
coords <- vrCoordinates(object, assay = assay) |
|
|
316 |
|
|
|
317 |
# Segments |
|
|
318 |
segments <- vrSegments(object, assay = assay) |
|
|
319 |
if(length(segments) > 0){ |
|
|
320 |
max_vertices <- max(vapply(segments, nrow, numeric(1))) |
|
|
321 |
num_cells <- length(segments) |
|
|
322 |
segmentations_array <- array(NA, dim = c(num_cells, max_vertices, 2)) |
|
|
323 |
cell_ids <- names(segments) |
|
|
324 |
for (i in seq_along(cell_ids)) { |
|
|
325 |
seg <- segments[[i]] |
|
|
326 |
seg_matrix <- as.matrix(seg[, c("x", "y")]) |
|
|
327 |
nrow_diff <- max_vertices - nrow(seg_matrix) |
|
|
328 |
if (nrow_diff > 0) { |
|
|
329 |
seg_matrix <- rbind(seg_matrix, matrix(NA, nrow = nrow_diff, ncol = 2)) |
|
|
330 |
} |
|
|
331 |
segmentations_array[i, , ] <- seg_matrix |
|
|
332 |
} |
|
|
333 |
for (k in seq_len(2)) { |
|
|
334 |
segmentations_array[,,k] <- t(apply(segmentations_array[,,k], 1, fill_na_with_preceding)) |
|
|
335 |
} |
|
|
336 |
} else { |
|
|
337 |
segmentations_array <- array(dim = nrow(coords)) |
|
|
338 |
} |
|
|
339 |
|
|
|
340 |
# Images |
|
|
341 |
images_mgk <- vrImages(object, assay = assay, ...) |
|
|
342 |
if(!is.list(images_mgk)){ |
|
|
343 |
images_mgk <- list(images_mgk) |
|
|
344 |
names(images_mgk) <- vrAssayNames(object, assay = assay) |
|
|
345 |
} |
|
|
346 |
image_list <- lapply(images_mgk, function(img) { |
|
|
347 |
list(images = list(hires = as.numeric(magick::image_data(img, channels = "rgb"))), |
|
|
348 |
scalefactors = list(tissue_hires_scalef = 1, spot_diameter_fullres = 0.5)) |
|
|
349 |
}) |
|
|
350 |
|
|
|
351 |
# obsm |
|
|
352 |
# TODO: currently embedding and spatial dimensions should of the same size, but its not |
|
|
353 |
# always the case in VoltRon objects |
|
|
354 |
obsm <- c(obsm, list(spatial = coords, |
|
|
355 |
spatial_AssayID = coords, |
|
|
356 |
segmentation = segmentations_array)) |
|
|
357 |
|
|
|
358 |
# save as zarr |
|
|
359 |
if(grepl(".zarr[/]?$", file)){ |
|
|
360 |
|
|
|
361 |
# check packages |
|
|
362 |
if(!requireNamespace('reticulate')) |
|
|
363 |
stop("Please install reticulate package!: install.packages('reticulate')") |
|
|
364 |
if(!requireNamespace('DelayedArray')) |
|
|
365 |
stop("Please install DelayedArray package for using DelayedArray functions") |
|
|
366 |
|
|
|
367 |
# run basilisk to call zarr methods |
|
|
368 |
python.path <- getPythonPath(python.path) |
|
|
369 |
if(!is.null(python.path)){ |
|
|
370 |
reticulate::use_python(python = python.path) |
|
|
371 |
|
|
|
372 |
zarr <- reticulate::import("zarr") |
|
|
373 |
anndata <- reticulate::import("anndata") |
|
|
374 |
make_numpy_friendly <- function(x) { |
|
|
375 |
if (DelayedArray::is_sparse(x)) { |
|
|
376 |
methods::as(x, "dgCMatrix") |
|
|
377 |
} |
|
|
378 |
else { |
|
|
379 |
as.matrix(x) |
|
|
380 |
} |
|
|
381 |
} |
|
|
382 |
X <- make_numpy_friendly(t(data)) |
|
|
383 |
obsm <- list(spatial = coords, |
|
|
384 |
spatial_AssayID = coords, |
|
|
385 |
segmentation = segmentations_array) |
|
|
386 |
adata <- anndata$AnnData(X = X, |
|
|
387 |
obs = metadata, |
|
|
388 |
obsm = obsm, |
|
|
389 |
uns = list(spatial = image_list)) |
|
|
390 |
adata <- reticulate::r_to_py(adata) |
|
|
391 |
adata$write_zarr(file) |
|
|
392 |
success <- TRUE |
|
|
393 |
} else if(requireNamespace('basilisk')){ |
|
|
394 |
py_env <- getBasilisk() |
|
|
395 |
proc <- basilisk::basiliskStart(py_env) |
|
|
396 |
on.exit(basilisk::basiliskStop(proc)) |
|
|
397 |
success <- basilisk::basiliskRun(proc, function(data, metadata, obsm, coords, segments, image_list, file) { |
|
|
398 |
zarr <- reticulate::import("zarr") |
|
|
399 |
anndata <- reticulate::import("anndata") |
|
|
400 |
make_numpy_friendly <- function(x) { |
|
|
401 |
if (DelayedArray::is_sparse(x)) { |
|
|
402 |
methods::as(x, "dgCMatrix") |
|
|
403 |
} |
|
|
404 |
else { |
|
|
405 |
as.matrix(x) |
|
|
406 |
} |
|
|
407 |
} |
|
|
408 |
X <- make_numpy_friendly(t(data)) |
|
|
409 |
obsm <- list(spatial = coords, |
|
|
410 |
spatial_AssayID = coords, |
|
|
411 |
segmentation = segmentations_array) |
|
|
412 |
adata <- anndata$AnnData(X = X, |
|
|
413 |
obs = metadata, |
|
|
414 |
obsm = obsm, |
|
|
415 |
uns = list(spatial = image_list)) |
|
|
416 |
adata <- reticulate::r_to_py(adata) |
|
|
417 |
adata$write_zarr(file) |
|
|
418 |
return(TRUE) |
|
|
419 |
}, data = data, metadata = metadata, obsm = obsm, coords = coords, segments = segmentations_array, image_list = image_list, file = file) |
|
|
420 |
} else { |
|
|
421 |
stop("Please define the 'python.path' or install the basilisk package!: BiocManager::install('basilisk')") |
|
|
422 |
} |
|
|
423 |
|
|
|
424 |
if(create.ometiff){ |
|
|
425 |
success2 <- as.OmeTiff(images_mgk[[1]], out_path = gsub("zarr[/]?$", "ome.tiff", file), python.path = python.path) |
|
|
426 |
success <- success & success2 |
|
|
427 |
} |
|
|
428 |
|
|
|
429 |
return(success) |
|
|
430 |
|
|
|
431 |
# save as h5ad |
|
|
432 |
} else if(grepl(".h5ad$", file)) { |
|
|
433 |
|
|
|
434 |
# Check and use a package for saving h5ad |
|
|
435 |
if (method == "anndataR") { |
|
|
436 |
if (!requireNamespace('anndataR', quietly = TRUE)) { |
|
|
437 |
stop("The anndataR package is not installed. Please install it or choose the 'anndata' method.") |
|
|
438 |
} |
|
|
439 |
|
|
|
440 |
# Create anndata using anndataR |
|
|
441 |
adata <- anndataR::AnnData(obs_names = rownames(metadata), |
|
|
442 |
var_names = rownames(data), |
|
|
443 |
X = t(data), |
|
|
444 |
obs = metadata, |
|
|
445 |
obsm = list(spatial = coords, |
|
|
446 |
spatial_AssayID = coords, |
|
|
447 |
segmentation = segmentations_array), |
|
|
448 |
uns = list(spatial = image_list)) |
|
|
449 |
|
|
|
450 |
# Write to h5ad file using anndataR |
|
|
451 |
anndataR::write_h5ad(adata, path = file) |
|
|
452 |
|
|
|
453 |
} else if (method == "anndata") { |
|
|
454 |
if (!requireNamespace('anndata', quietly = TRUE)) { |
|
|
455 |
stop("The anndata package is not installed. Please install it or choose the 'anndataR' method.") |
|
|
456 |
} |
|
|
457 |
|
|
|
458 |
# check reticulate |
|
|
459 |
python.path <- getPythonPath(python.path) |
|
|
460 |
if(!is.null(python.path)){ |
|
|
461 |
reticulate::use_python(python.path) |
|
|
462 |
} |
|
|
463 |
|
|
|
464 |
# Create anndata using anndata |
|
|
465 |
adata <- anndata::AnnData(X = t(data), |
|
|
466 |
obs = metadata, |
|
|
467 |
obsm = list(spatial = coords, |
|
|
468 |
spatial_AssayID = coords, |
|
|
469 |
segmentation = segmentations_array), |
|
|
470 |
uns = list(spatial = image_list)) |
|
|
471 |
|
|
|
472 |
|
|
|
473 |
# Write to h5ad file using anndata |
|
|
474 |
anndata::write_h5ad(adata, filename = file) |
|
|
475 |
|
|
|
476 |
} else { |
|
|
477 |
stop("Invalid method selected. Please choose either 'anndataR' or 'anndata'.") |
|
|
478 |
} |
|
|
479 |
|
|
|
480 |
} else { |
|
|
481 |
stop("the 'file' should have an .h5ad, .zarr or .zarr/ extension") |
|
|
482 |
} |
|
|
483 |
} |
|
|
484 |
|
|
|
485 |
#### |
|
|
486 |
# Zarr #### |
|
|
487 |
#### |
|
|
488 |
|
|
|
489 |
#' @rdname as.Zarr |
|
|
490 |
#' |
|
|
491 |
#' @importFrom magick image_raster |
|
|
492 |
#' @importFrom grDevices col2rgb |
|
|
493 |
#' |
|
|
494 |
#' @export |
|
|
495 |
"as.Zarr.magick-image" <- function (object, out_path, image_id = "image_1") |
|
|
496 |
{ |
|
|
497 |
# check packages |
|
|
498 |
if(!requireNamespace('basilisk')) |
|
|
499 |
stop("Please install basilisk package!: BiocManager::install('basilisk')") |
|
|
500 |
if(!requireNamespace('reticulate')) |
|
|
501 |
stop("Please install reticulate package!: install.packages('reticulate')") |
|
|
502 |
|
|
|
503 |
img_arr <- apply(as.matrix(magick::image_raster(object, tidy = FALSE)), c(1, 2), col2rgb) |
|
|
504 |
py_env <- getBasilisk() |
|
|
505 |
proc <- basilisk::basiliskStart(py_env) |
|
|
506 |
on.exit(basilisk::basiliskStop(proc)) |
|
|
507 |
success <- basilisk::basiliskRun(proc, function(img_arr, image_id, out_path) { |
|
|
508 |
zarr <- reticulate::import("zarr") |
|
|
509 |
ome_zarr <- reticulate::import("ome_zarr") |
|
|
510 |
z_root <- zarr$open_group(out_path, mode = "w") |
|
|
511 |
obj_list <- function(...) { |
|
|
512 |
retval <- stats::setNames(list(), character(0)) |
|
|
513 |
param_list <- list(...) |
|
|
514 |
for (key in names(param_list)) { |
|
|
515 |
retval[[key]] = param_list[[key]] |
|
|
516 |
} |
|
|
517 |
retval |
|
|
518 |
} |
|
|
519 |
default_window <- obj_list(start = 0, min = 0, max = 255, end = 255) |
|
|
520 |
ome_zarr$writer$write_image(image = img_arr, |
|
|
521 |
group = z_root, |
|
|
522 |
axes = "cyx", |
|
|
523 |
omero = obj_list(name = image_id, version = "0.3", |
|
|
524 |
rdefs = obj_list(), |
|
|
525 |
channels = list(obj_list(label = "r", color = "FF0000", window = default_window), |
|
|
526 |
obj_list(label = "g", color = "00FF00", window = default_window), |
|
|
527 |
obj_list(label = "b", color = "0000FF", window = default_window)))) |
|
|
528 |
return(TRUE) |
|
|
529 |
}, img_arr = img_arr, image_id = image_id, out_path = out_path) |
|
|
530 |
return(success) |
|
|
531 |
} |
|
|
532 |
|
|
|
533 |
#### |
|
|
534 |
# OME #### |
|
|
535 |
#### |
|
|
536 |
|
|
|
537 |
#' as.OmeTiff |
|
|
538 |
#' |
|
|
539 |
#' Converting VoltRon (magick) images to ome.tiff |
|
|
540 |
#' |
|
|
541 |
#' @param object a magick-image object |
|
|
542 |
#' @param out_path output path to ome.tiff file |
|
|
543 |
#' @param image_id image name |
|
|
544 |
#' @param python.path the path to the python binary, otherwise either \code{basilisk} package is used or \code{getOption("voltron.python.path")} should be not NULL. |
|
|
545 |
#' |
|
|
546 |
#' @importFrom magick image_raster |
|
|
547 |
#' @importFrom grDevices col2rgb |
|
|
548 |
#' |
|
|
549 |
#' @export |
|
|
550 |
as.OmeTiff <- function (object, out_path, image_id = "image_1", python.path = NULL){ |
|
|
551 |
|
|
|
552 |
# check packages |
|
|
553 |
if(!requireNamespace('reticulate')) |
|
|
554 |
stop("Please install reticulate package!: install.packages('reticulate')") |
|
|
555 |
|
|
|
556 |
# get image and transpose the array |
|
|
557 |
img_arr <- apply(as.matrix(magick::image_raster(object, tidy = FALSE)), c(1, 2), col2rgb) |
|
|
558 |
img_arr <- aperm(img_arr, c(2,3,1)) |
|
|
559 |
|
|
|
560 |
# run basilisk |
|
|
561 |
python.path <- getPythonPath(python.path) |
|
|
562 |
if(!is.null(python.path)){ |
|
|
563 |
reticulate::use_python(python = python.path) |
|
|
564 |
e <- new.env() |
|
|
565 |
options("reticulate.engine.environment" = e) |
|
|
566 |
img_arr <- reticulate::r_to_py(img_arr) |
|
|
567 |
assign("img_arr_py", img_arr, envir = e) |
|
|
568 |
reticulate::py_run_string( |
|
|
569 |
paste0("import numpy as np |
|
|
570 |
import tifffile |
|
|
571 |
tifimage = r.img_arr_py.astype('uint8') |
|
|
572 |
# tifimage = np.random.randint(0, 255, (32, 32, 3), 'uint8') |
|
|
573 |
with tifffile.TiffWriter('", out_path, "') as tif: tif.write(tifimage, photometric='rgb')" |
|
|
574 |
)) |
|
|
575 |
success <- TRUE |
|
|
576 |
} else if(requireNamespace('basilisk')) { |
|
|
577 |
py_env <- getBasilisk() |
|
|
578 |
proc <- basilisk::basiliskStart(py_env) |
|
|
579 |
on.exit(basilisk::basiliskStop(proc)) |
|
|
580 |
success <- basilisk::basiliskRun(proc, function(img_arr, image_id, out_path, e) { |
|
|
581 |
|
|
|
582 |
# set up environment |
|
|
583 |
e <- new.env() |
|
|
584 |
options("reticulate.engine.environment" = e) |
|
|
585 |
|
|
|
586 |
# get image data to python environment |
|
|
587 |
img_arr <- reticulate::r_to_py(img_arr) |
|
|
588 |
assign("img_arr_py", img_arr, envir = e) |
|
|
589 |
|
|
|
590 |
# save ome.tiff |
|
|
591 |
reticulate::py_run_string( |
|
|
592 |
paste0("import numpy as np |
|
|
593 |
import tifffile |
|
|
594 |
tifimage = r.img_arr_py.astype('uint8') |
|
|
595 |
# tifimage = np.random.randint(0, 255, (32, 32, 3), 'uint8') |
|
|
596 |
with tifffile.TiffWriter('", out_path, "') as tif: tif.write(tifimage, photometric='rgb')" |
|
|
597 |
)) |
|
|
598 |
|
|
|
599 |
return(TRUE) |
|
|
600 |
}, img_arr = img_arr, image_id = image_id, out_path = out_path) |
|
|
601 |
} else { |
|
|
602 |
stop("Please define the 'python.path' or install the basilisk package!: BiocManager::install('basilisk')") |
|
|
603 |
} |
|
|
604 |
|
|
|
605 |
return(success) |
|
|
606 |
} |
|
|
607 |
|
|
|
608 |
#' as.OmeZarr |
|
|
609 |
#' |
|
|
610 |
#' Converting VoltRon (magick) images to ome.tiff |
|
|
611 |
#' |
|
|
612 |
#' @param object a magick-image object |
|
|
613 |
#' @param out_path output path to ome.tiff file |
|
|
614 |
#' @param image_id image name |
|
|
615 |
#' |
|
|
616 |
#' @importFrom magick image_raster |
|
|
617 |
#' @importFrom grDevices col2rgb |
|
|
618 |
#' |
|
|
619 |
#' @export |
|
|
620 |
as.OmeZarr <- function (object, out_path, image_id = "image_1"){ |
|
|
621 |
|
|
|
622 |
# check packages |
|
|
623 |
if(!requireNamespace('basilisk')) |
|
|
624 |
stop("Please install basilisk package!: BiocManager::install('basilisk')") |
|
|
625 |
if(!requireNamespace('reticulate')) |
|
|
626 |
stop("Please install reticulate package!: install.packages('reticulate')") |
|
|
627 |
|
|
|
628 |
# get image and transpose the array |
|
|
629 |
img_arr <- apply(as.matrix(magick::image_raster(object, tidy = FALSE)), c(1, 2), col2rgb) |
|
|
630 |
|
|
|
631 |
# run basilisk |
|
|
632 |
py_env <- getBasilisk() |
|
|
633 |
proc <- basilisk::basiliskStart(py_env) |
|
|
634 |
on.exit(basilisk::basiliskStop(proc)) |
|
|
635 |
success <- basilisk::basiliskRun(proc, function(img_arr, image_id, out_path) { |
|
|
636 |
zarr <- reticulate::import("zarr") |
|
|
637 |
ome_zarr <- reticulate::import("ome_zarr") |
|
|
638 |
z_root <- zarr$open_group(out_path, mode = "w") |
|
|
639 |
obj_list <- function(...) { |
|
|
640 |
retval <- stats::setNames(list(), character(0)) |
|
|
641 |
param_list <- list(...) |
|
|
642 |
for (key in names(param_list)) { |
|
|
643 |
retval[[key]] = param_list[[key]] |
|
|
644 |
} |
|
|
645 |
retval |
|
|
646 |
} |
|
|
647 |
default_window <- obj_list(start = 0, min = 0, max = 255, end = 255) |
|
|
648 |
ome_zarr$writer$write_image(image = img_arr, |
|
|
649 |
group = z_root, |
|
|
650 |
axes = "cyx", |
|
|
651 |
omero = obj_list(name = image_id, version = "0.3", |
|
|
652 |
rdefs = obj_list(), |
|
|
653 |
channels = list(obj_list(label = "r", color = "FF0000", window = default_window), |
|
|
654 |
obj_list(label = "g", color = "00FF00", window = default_window), |
|
|
655 |
obj_list(label = "b", color = "0000FF", window = default_window)))) |
|
|
656 |
return(TRUE) |
|
|
657 |
}, img_arr = img_arr, image_id = image_id, out_path = out_path) |
|
|
658 |
return(success) |
|
|
659 |
} |
|
|
660 |
|
|
|
661 |
#### |
|
|
662 |
# Giotto #### |
|
|
663 |
#### |
|
|
664 |
|
|
|
665 |
#' as.Giotto |
|
|
666 |
#' |
|
|
667 |
#' Converting a VoltRon object into a Giotto object |
|
|
668 |
#' |
|
|
669 |
#' @param object a VoltRon object |
|
|
670 |
#' @param assay the name of the assay to be converted |
|
|
671 |
#' @param reg if TRUE, registered coordinates will be used |
|
|
672 |
#' |
|
|
673 |
#' @rdname as.Giotto |
|
|
674 |
#' |
|
|
675 |
#' @importFrom dplyr bind_cols |
|
|
676 |
#' @importFrom stringr str_replace str_extract |
|
|
677 |
#' @importFrom magick image_write |
|
|
678 |
#' |
|
|
679 |
#' @export |
|
|
680 |
as.Giotto <- function(object, assay = NULL, reg = FALSE){ |
|
|
681 |
|
|
|
682 |
# sample metadata |
|
|
683 |
sample_metadata <- SampleMetadata(object) |
|
|
684 |
|
|
|
685 |
# check Seurat package |
|
|
686 |
if(!requireNamespace('Giotto')) |
|
|
687 |
stop("Please install Giotto package!devtools::install_github('drieslab/Giotto')") |
|
|
688 |
|
|
|
689 |
# check the number of assays |
|
|
690 |
if(is.null(assay)){ |
|
|
691 |
if(length(unique(sample_metadata[["Assay"]])) > 1){ |
|
|
692 |
stop("You can only convert a single VoltRon assay into a Seurat object!") |
|
|
693 |
} else { |
|
|
694 |
assay <- sample_metadata[["Assay"]] |
|
|
695 |
} |
|
|
696 |
} else { |
|
|
697 |
vrMainAssay(object) <- assay |
|
|
698 |
} |
|
|
699 |
|
|
|
700 |
# check the number of assays |
|
|
701 |
if(!unique(vrAssayTypes(object, assay = assay)) %in% c("cell")) { |
|
|
702 |
stop("Conversion of assay types other than cells into Giotto is not yet permitted!") |
|
|
703 |
} |
|
|
704 |
|
|
|
705 |
# data |
|
|
706 |
rowdata <- vrData(object, assay = assay, norm = FALSE) |
|
|
707 |
|
|
|
708 |
# metadata |
|
|
709 |
metadata <- Metadata(object, assay = assay) |
|
|
710 |
metadata$cell_ID <- rownames(metadata) |
|
|
711 |
assays <- stringr::str_extract(rownames(metadata), pattern = "_Assay[0-9]+$") |
|
|
712 |
assays <- gsub("^_", "", assays) |
|
|
713 |
|
|
|
714 |
# coordinates |
|
|
715 |
coords <- vrCoordinates(object, assay = assay, reg = reg) |
|
|
716 |
|
|
|
717 |
# Seurat object |
|
|
718 |
gio <- Giotto::createGiottoObject(expression = rowdata, |
|
|
719 |
spatial_locs = coords, |
|
|
720 |
cell_metadata = metadata) |
|
|
721 |
|
|
|
722 |
# get image objects for each assay |
|
|
723 |
for(assy in vrAssayNames(object)){ |
|
|
724 |
assay_object <- object[[assy]] |
|
|
725 |
if(vrAssayTypes(assay_object) == "cell"){ |
|
|
726 |
img <- vrImages(assay_object) |
|
|
727 |
gio_img <- Giotto::createGiottoImage(gio, |
|
|
728 |
spat_unit = "cell", |
|
|
729 |
mg_object = img) |
|
|
730 |
gio <- Giotto::addGiottoImage(gio, images = list(gio_img), spat_loc_name = "cell") |
|
|
731 |
} else { |
|
|
732 |
stop("Currently VoltRon does only support converting cell type spatial data sets into SpatialExperiment objects!") |
|
|
733 |
} |
|
|
734 |
} |
|
|
735 |
|
|
|
736 |
# return |
|
|
737 |
gio |
|
|
738 |
} |
|
|
739 |
|
|
|
740 |
#### |
|
|
741 |
# SpatialExperiment #### |
|
|
742 |
#### |
|
|
743 |
|
|
|
744 |
#' @param type the spatial data type of Seurat object: "image" or "spatial" |
|
|
745 |
#' @param assay_type one of two types, 'cell' or 'spot' etc. |
|
|
746 |
#' @param assay_name the assay name of the voltron assays (e.g. Visium, Xenium etc.) |
|
|
747 |
#' @param image_id select image_id names if needed. |
|
|
748 |
#' @param verbose verbose |
|
|
749 |
#' @param ... Additional parameter passed to \link{formVoltRon} |
|
|
750 |
#' |
|
|
751 |
#' @rdname as.VoltRon |
|
|
752 |
#' @method as.VoltRon SpatialExperiment |
|
|
753 |
#' |
|
|
754 |
#' @importFrom magick image_read |
|
|
755 |
#' |
|
|
756 |
#' @export |
|
|
757 |
as.VoltRon.SpatialExperiment <- function(object, assay_type = "cell", assay_name = NULL, image_id = NULL, verbose = TRUE, ...){ |
|
|
758 |
|
|
|
759 |
# check SpatialExperiment package |
|
|
760 |
if(!requireNamespace('SpatialExperiment')) |
|
|
761 |
stop("Please install SpatialExperiment package for using SpatialExperiment objects!: BiocManager::install('SpatialExperiment')") |
|
|
762 |
|
|
|
763 |
# raw counts |
|
|
764 |
data <- SummarizedExperiment::assay(object, i = "counts") |
|
|
765 |
|
|
|
766 |
# metadata |
|
|
767 |
metadata <- as.data.frame(SummarizedExperiment::colData(object)) |
|
|
768 |
|
|
|
769 |
# embeddings |
|
|
770 |
dim_names <- SingleCellExperiment::reducedDimNames(object) |
|
|
771 |
if(length(dim_names) > 0){ |
|
|
772 |
embeddings_flag <- TRUE |
|
|
773 |
embedding_list <- sapply(dim_names, function(x) { |
|
|
774 |
SingleCellExperiment::reducedDim(object, type = x) |
|
|
775 |
}, USE.NAMES = TRUE) |
|
|
776 |
} else { |
|
|
777 |
embeddings_flag <- FALSE |
|
|
778 |
} |
|
|
779 |
|
|
|
780 |
# coords |
|
|
781 |
coords <- SpatialExperiment::spatialCoords(object) |
|
|
782 |
colnames(coords) <- c("x", "y") |
|
|
783 |
|
|
|
784 |
# img data |
|
|
785 |
imgdata <- SpatialExperiment::imgData(object) |
|
|
786 |
|
|
|
787 |
# image |
|
|
788 |
voltron_list <- list() |
|
|
789 |
sample_names <- unique(metadata$sample_id) |
|
|
790 |
for(samp in sample_names){ |
|
|
791 |
|
|
|
792 |
# spatial points |
|
|
793 |
sppoints <- rownames(metadata)[metadata$sample_id == samp] |
|
|
794 |
|
|
|
795 |
# metadata |
|
|
796 |
cur_metadata <- metadata[sppoints,] |
|
|
797 |
|
|
|
798 |
# data |
|
|
799 |
cur_data <- data[,sppoints] |
|
|
800 |
|
|
|
801 |
# coords |
|
|
802 |
cur_coords <- coords[sppoints,] |
|
|
803 |
|
|
|
804 |
# image |
|
|
805 |
if(nrow(imgdata) > 0){ |
|
|
806 |
|
|
|
807 |
# get image names |
|
|
808 |
if(is.null(image_id)){ |
|
|
809 |
image_names <- imgdata$image_id[imgdata$sample_id == samp] |
|
|
810 |
} else { |
|
|
811 |
image_names <- image_id |
|
|
812 |
} |
|
|
813 |
|
|
|
814 |
# get image scales |
|
|
815 |
scale.factors_list <- vapply(image_names, function(img){ |
|
|
816 |
SpatialExperiment::scaleFactors(object, |
|
|
817 |
sample_id = samp, |
|
|
818 |
image_id = img) |
|
|
819 |
}, numeric(1)) |
|
|
820 |
if(length(unique(scale.factors_list)) > 1){ |
|
|
821 |
stop("All images of a single sample should have the same scale for VoltRon object conversion!: please select an 'image_id'") |
|
|
822 |
} |
|
|
823 |
|
|
|
824 |
# get image list |
|
|
825 |
img_list <- sapply(image_names, function(img){ |
|
|
826 |
imgraster <- SpatialExperiment::imgRaster(object, |
|
|
827 |
sample_id = samp, |
|
|
828 |
image_id = img) |
|
|
829 |
magick::image_read(imgraster) |
|
|
830 |
}, USE.NAMES = TRUE) |
|
|
831 |
|
|
|
832 |
# scale coordinates |
|
|
833 |
scale.factors <- unique(unlist(scale.factors_list)) |
|
|
834 |
cur_coords <- cur_coords*scale.factors |
|
|
835 |
|
|
|
836 |
# reverse y coordinates |
|
|
837 |
imginfo <- getImageInfo(img_list[[1]]) |
|
|
838 |
cur_coords[,2] <- imginfo$height - cur_coords[,2] |
|
|
839 |
} else { |
|
|
840 |
img_list <- NULL |
|
|
841 |
} |
|
|
842 |
|
|
|
843 |
# get params |
|
|
844 |
if(assay_type == "spot"){ |
|
|
845 |
vis.spot.radius <- 1 |
|
|
846 |
spot.radius <- 1 |
|
|
847 |
} else { |
|
|
848 |
params <- list() |
|
|
849 |
} |
|
|
850 |
|
|
|
851 |
# form voltron |
|
|
852 |
assay_name <- assay_name |
|
|
853 |
assay_type <- assay_type |
|
|
854 |
voltron_list[[samp]] <- formVoltRon(data = cur_data, metadata = cur_metadata, coords = cur_coords, |
|
|
855 |
main.assay = assay_name, image = img_list, params = params, |
|
|
856 |
assay.type = assay_type, sample_name = samp, ...) |
|
|
857 |
|
|
|
858 |
# add embeddings |
|
|
859 |
spatialpoints <- vrSpatialPoints(voltron_list[[samp]]) |
|
|
860 |
spatialpoints_nopostfix <- stringr::str_replace(spatialpoints, "_Assay[0-9]+$", "") |
|
|
861 |
spatialpoints_assay <- stringr::str_extract(spatialpoints, "Assay[0-9]+$") |
|
|
862 |
if(embeddings_flag){ |
|
|
863 |
for(embed_name in names(embedding_list)){ |
|
|
864 |
cur_embedding <- embedding_list[[embed_name]][sppoints,] |
|
|
865 |
rownames(cur_embedding) <- spatialpoints |
|
|
866 |
vrEmbeddings(voltron_list[[samp]], type = embed_name) <- cur_embedding |
|
|
867 |
} |
|
|
868 |
} |
|
|
869 |
} |
|
|
870 |
|
|
|
871 |
# merge object |
|
|
872 |
if(verbose) |
|
|
873 |
message("Merging object ...") |
|
|
874 |
if(length(voltron_list) > 1){ |
|
|
875 |
vrobject <- merge(voltron_list[[1]], voltron_list[-1]) |
|
|
876 |
} else { |
|
|
877 |
vrobject <- voltron_list[[1]] |
|
|
878 |
} |
|
|
879 |
|
|
|
880 |
return(vrobject) |
|
|
881 |
} |
|
|
882 |
|
|
|
883 |
#' as.SpatialExperiment |
|
|
884 |
#' |
|
|
885 |
#' Converting a VoltRon object into a SpatialExperiment object |
|
|
886 |
#' |
|
|
887 |
#' @param object a VoltRon object |
|
|
888 |
#' @param assay the name of the assay to be converted |
|
|
889 |
#' @param reg if TRUE, registered coordinates will be used |
|
|
890 |
#' |
|
|
891 |
#' @rdname as.SpatialExperiment |
|
|
892 |
#' |
|
|
893 |
#' @importFrom dplyr bind_cols |
|
|
894 |
#' @importFrom stringr str_replace str_extract |
|
|
895 |
#' @importFrom magick image_write |
|
|
896 |
#' |
|
|
897 |
#' @export |
|
|
898 |
as.SpatialExperiment <- function(object, assay = NULL, reg = FALSE){ |
|
|
899 |
|
|
|
900 |
# sample metadata |
|
|
901 |
sample_metadata <- SampleMetadata(object) |
|
|
902 |
|
|
|
903 |
# check Seurat package |
|
|
904 |
if(!requireNamespace('SpatialExperiment')) |
|
|
905 |
stop("Please install SpatialExperiment package!: BiocManager::install('SpatialExperiment'')") |
|
|
906 |
|
|
|
907 |
# check the number of assays |
|
|
908 |
if(is.null(assay)){ |
|
|
909 |
if(length(unique(sample_metadata[["Assay"]])) > 1){ |
|
|
910 |
stop("You can only convert a single VoltRon assay into a Seurat object!") |
|
|
911 |
} else { |
|
|
912 |
assay <- sample_metadata[["Assay"]] |
|
|
913 |
} |
|
|
914 |
} else { |
|
|
915 |
vrMainAssay(object) <- assay |
|
|
916 |
} |
|
|
917 |
|
|
|
918 |
# check the number of assays |
|
|
919 |
if(unique(vrAssayTypes(object, assay = assay)) %in% c("ROI", "molecule", "tile")) { |
|
|
920 |
stop("Conversion of ROI, molecule and tile assays into SpatialExperiment is not yet permitted!") |
|
|
921 |
} |
|
|
922 |
|
|
|
923 |
# data |
|
|
924 |
rawdata <- as.matrix(vrData(object, assay = assay, norm = FALSE)) |
|
|
925 |
|
|
|
926 |
# metadata |
|
|
927 |
metadata <- Metadata(object, assay = assay) |
|
|
928 |
if(is.null(rownames(metadata))) |
|
|
929 |
rownames(metadata) <- metadata$id |
|
|
930 |
metadata <- metadata[colnames(rawdata),] |
|
|
931 |
assays <- stringr::str_extract(rownames(metadata), pattern = "_Assay[0-9]+$") |
|
|
932 |
assays <- gsub("^_", "", assays) |
|
|
933 |
|
|
|
934 |
# Embeddings |
|
|
935 |
reduceddims <- list() |
|
|
936 |
if (length(vrEmbeddingNames(object, assay = assay)) > 0) { |
|
|
937 |
for (embed_name in vrEmbeddingNames(object, assay = assay)) { |
|
|
938 |
reduceddims[[embed_name]] <- vrEmbeddings(object, assay = assay, type = embed_name) |
|
|
939 |
} |
|
|
940 |
} |
|
|
941 |
|
|
|
942 |
# coordinates |
|
|
943 |
coords <- as.matrix(vrCoordinates(flipCoordinates(object, assay = assay), assay = assay, reg = reg)) |
|
|
944 |
coords <- coords[colnames(rawdata),] |
|
|
945 |
coords <- coords[,c("x", "y")] |
|
|
946 |
colnames(coords) <- c("x_centroid", "y_centroid") |
|
|
947 |
|
|
|
948 |
# Seurat object |
|
|
949 |
spe <- SpatialExperiment::SpatialExperiment(assay=list(counts = rawdata), |
|
|
950 |
colData=metadata, |
|
|
951 |
reducedDims = reduceddims, |
|
|
952 |
sample_id=assays, |
|
|
953 |
spatialCoords=coords) |
|
|
954 |
spe$sample_id <- assays |
|
|
955 |
|
|
|
956 |
# get image objects for each assay |
|
|
957 |
for(assy in vrAssayNames(object)){ |
|
|
958 |
assay_object <- object[[assy]] |
|
|
959 |
channels <- vrImageChannelNames(assay_object) |
|
|
960 |
for(ch in channels){ |
|
|
961 |
img <- vrImages(assay_object, channel = ch) |
|
|
962 |
imgfile <- tempfile(fileext='.png') |
|
|
963 |
magick::image_write(image = img, path = imgfile, format = 'png') |
|
|
964 |
spe <- SpatialExperiment::addImg(spe, |
|
|
965 |
sample_id = vrAssayNames(assay_object), |
|
|
966 |
image_id = ch, |
|
|
967 |
imageSource = imgfile, |
|
|
968 |
scaleFactor = 1, |
|
|
969 |
load = TRUE) |
|
|
970 |
file.remove(imgfile) |
|
|
971 |
} |
|
|
972 |
} |
|
|
973 |
|
|
|
974 |
# return |
|
|
975 |
spe |
|
|
976 |
} |
|
|
977 |
|
|
|
978 |
#### |
|
|
979 |
# Auxiliary #### |
|
|
980 |
#### |
|
|
981 |
|
|
|
982 |
getPythonPath <- function(python.path){ |
|
|
983 |
voltron.python.path <- getOption("voltron.python.path") |
|
|
984 |
python.path <- python.path %||% voltron.python.path |
|
|
985 |
if(is.null(python.path)){ |
|
|
986 |
return(NULL) |
|
|
987 |
} else { |
|
|
988 |
if(file.exists(python.path)){ |
|
|
989 |
return(python.path) |
|
|
990 |
} else if(file.exists(voltron.python.path)){ |
|
|
991 |
return(voltron.python.path) |
|
|
992 |
} else { |
|
|
993 |
stop("The python path '", python.path, "' doesn't exist!") |
|
|
994 |
} |
|
|
995 |
} |
|
|
996 |
} |