% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/Tweedieverse.R
\name{Tweedieverse}
\alias{Tweedieverse}
\title{Differential analysis of multi-omics data using Tweedie GLMs}
\usage{
Tweedieverse(
input_features,
input_metadata = NULL,
output,
assay_name = "counts",
abd_threshold = 0,
prev_threshold = 0.1,
var_threshold = 0,
entropy_threshold = 0,
base_model = "CPLM",
link = "log",
fixed_effects = NULL,
random_effects = NULL,
cutoff_ZSCP = 0.3,
criteria_ZACP = "BIC",
adjust_offset = TRUE,
scale_factor = NULL,
max_significance = 0.05,
correction = "BH",
standardize = TRUE,
cores = 1,
optimizer = "nlminb",
na.action = na.exclude,
plot_heatmap = FALSE,
plot_scatter = FALSE,
heatmap_first_n = 50,
reference = NULL
)
}
\arguments{
\item{input_features}{A tab-delimited input file or an R data frame of features (can be in rows/columns)
and samples (or cells). Samples are expected to have matching names with \code{input_metadata}.
\code{input_features} can also be an object of class \code{SummarizedExperiment} or \code{SingleCellExperiment}
that contains the expression or abundance matrix and other metadata; the \code{assays}
slot contains the expression or abundance matrix and is named \code{"counts"}.
This matrix should have one row for each feature and one sample for each column.
The \code{colData} slot should contain a data frame with one row per
sample and columns that contain metadata for each sample.
Additional information about the experiment can be contained in the
\code{metadata} slot as a list.}
\item{input_metadata}{A tab-delimited input file or an R data frame of metadata (rows/columns).
Samples are expected to have matching sample names with \code{input_features}.
This file is ignored when \code{input_features} is a \code{SummarizedExperiment}
or a \code{SingleCellExperiment} object with \code{colData} containing the same information.}
\item{output}{The output folder to write results.}
\item{assay_name}{If the input is provided as one of the accepted Bioconductor objects
(e.g., SummarizedExperiment, RangedSummarizedExperiment, SingleCellExperiment, or TreeSummarizedExperiment),
this argument selects the name of the assay slot in the input object that contains the omics measurements.}
\item{abd_threshold}{If prevalence-abundance filtering is desired, only features that are present (or detected)
in at least \code{prev_threshold} percent of samples at \code{abd_threshold} minimum abundance (read count or proportion)
are retained. Default value for \code{abd_threshold} is \code{0.0}.
To disable prevalence-abundance filtering, set \code{abd_threshold = -Inf}.}
\item{prev_threshold}{If prevalence-abundance filtering is desired, only features that are present (or detected)
in at least \code{prev_threshold} percent of samples at \code{abd_threshold} minimum abundance (read count or proportion)
are retained. Default value for \code{prev_threshold} is \code{0.1}.}
\item{var_threshold}{If variance filtering is desired, only features that have variances greater than
\code{var_threshold} are retained. This step is done after the prevalence-abundance filtering.
Default value for \code{var_threshold} is \code{0.0} (i.e. no variance filtering).}
\item{entropy_threshold}{If entropy-based filtering is desired for metadata, only features that have entropy greater than
\code{entropy_threshold} are retained. Default value for \code{entropy_threshold} is \code{0.0} (i.e. no entropy filtering).}
\item{base_model}{The per-feature base model. Default is "CPLM". Must be one of "CPLM", "ZICP", "ZSCP", or "ZACP".}
\item{link}{A specification of the GLM link function. Default is "log". Must be one of "log", "identity", "sqrt", or "inverse".}
\item{fixed_effects}{Metadata variable(s) describing the fixed effects coefficients.}
\item{random_effects}{Metadata variable(s) describing the random effects part of the model.}
\item{cutoff_ZSCP}{For \code{base_model = "ZSCP"}, the cutoff to stratify features for
adaptive ZI modeling based on sparsity (zero-inflation proportion). Default is 0.3. Must be between 0 and 1.}
\item{criteria_ZACP}{For \code{base_model = "ZACP"}, the criteria to select the
best fitting model per feature. The possible options are 'AIC' and BIC' (default).
More criteria will be supported in a future release.}
\item{adjust_offset}{If TRUE (default), an offset term will be included as the logarithm of \code{scale_factor}.}
\item{scale_factor}{Name of the numerical variable containing library size (for non-normalized data) or scale factor
(for normalized data) across samples to be included as an offset in the base model (when \code{adjust_offset = TRUE}).
If not found in metadata, defaults to the sample-wise total sums, unless \code{adjust_offset = FALSE}.}
\item{max_significance}{The q-value threshold for significance. Default is 0.05.}
\item{correction}{The correction method for computing the q-value (see \code{\link[stats]{p.adjust}} for options, default is 'BH').}
\item{standardize}{Should continuous metadata be standardized? Default is TRUE. Bypassed for categorical variables.}
\item{cores}{An integer that indicates the number of R processes to run in parallel. Default is 1.}
\item{optimizer}{The optimization routine to be used for estimating the parameters of the Tweedie model.
Possible choices are \code{"nlminb"} (the default, see \code{\link[stats]{nlminb}}),
\code{"bobyqa"} (\code{\link[minqa]{bobyqa}}), and \code{"L-BFGS-B"} (\code{\link[stats]{optim}}).
Ignored for random effects modeling which uses an alternative Template Model Builder (TMB) approach (\code{\link[glmmTMB]{glmmTMB}}).}
\item{na.action}{How to handle missing values? See \code{\link{na.action}}. Default is \code{\link{na.exclude}}.}
\item{plot_heatmap}{Logical. If TRUE (default is FALSE), generate a heatmap of the (top \code{heatmap_first_n}) significant associations.}
\item{plot_scatter}{Logical. If TRUE (default is FALSE), generate scatter/box plots of individual associations.}
\item{heatmap_first_n}{In heatmap, plot top N features with significant associations (default is 50).}
\item{reference}{The factor to use as a reference for a variable with more than two levels provided as a string of 'variable,reference' semi-colon delimited for multiple variables (default is NULL).}
}
\value{
A data frame containing coefficient estimates, p-values, and q-values (multiplicity-adjusted p-values) are returned.
}
\description{
Fit a per-feature Tweedie generalized linear model to omics features.
}
\examples{
\dontrun{
##############################################################################
# Example 1 - Differential Abundance Analysis of Synthetic Microbiome Counts #
##############################################################################
#######################################
# Install and Load Required Libraries #
#######################################
library(devtools)
devtools::install_github('biobakery/sparseDOSSA@varyLibSize')
library(sparseDOSSA)
library(stringi)
######################
# Specify Parameters #
######################
n.microbes <- 200 # Number of Features
n.samples <- 100 # Number of Samples
spike.perc <- 0.02 # Percentage of Spiked-in Bugs
spikeStrength<-"20" # Effect Size
###########################
# Specify Binary Metadata #
###########################
n.metadata <- 1
UserMetadata<-as.matrix(rep(c(0,1), each=n.samples/2))
UserMetadata<-t(UserMetadata) # Transpose
###################################################
# Spiked-in Metadata (Which Metadata to Spike-in) #
###################################################
Metadatafrozenidx<-1
spikeCount<-as.character(length(Metadatafrozenidx))
significant_metadata<-paste('Metadata', Metadatafrozenidx, sep='')
#############################################
# Generate SparseDOSSA Synthetic Abundances #
#############################################
DD<-sparseDOSSA::sparseDOSSA(number_features = n.microbes,
number_samples = n.samples,
UserMetadata=UserMetadata,
Metadatafrozenidx=Metadatafrozenidx,
datasetCount = 1,
spikeCount = spikeCount,
spikeStrength = spikeStrength,
noZeroInflate=TRUE,
percent_spiked=spike.perc,
seed = 1234)
##############################
# Gather SparseDOSSA Outputs #
##############################
sparsedossa_results <- as.data.frame(DD$OTU_count)
rownames(sparsedossa_results)<-sparsedossa_results$X1
sparsedossa_results<-sparsedossa_results[-1,-1]
colnames(sparsedossa_results)<-paste('Sample', 1:ncol(sparsedossa_results), sep='')
data<-as.matrix(sparsedossa_results[-c((n.metadata+1):(2*n.microbes+n.metadata)),])
data<-data.matrix(data)
class(data) <- "numeric"
truth<-c(unlist(DD$truth))
truth<-truth[!stri_detect_fixed(truth,":")]
truth<-truth[(5+n.metadata):length(truth)]
truth<-as.data.frame(truth)
significant_features<-truth[seq(1,
(as.numeric(spikeCount)+1)*(n.microbes*spike.perc), (as.numeric(spikeCount)+1)),]
significant_features<-as.vector(significant_features)
####################
# Extract Features #
####################
features<-as.data.frame(t(data[-c(1:n.metadata),]))
####################
# Extract Metadata #
####################
metadata<-as.data.frame(data[1,])
colnames(metadata)<-rownames(data)[1]
###############################
# Mark True Positive Features #
###############################
wh.TP = colnames(features) \%in\% significant_features
colnames(features)<-paste("Feature", 1:n.microbes, sep = "")
newname = paste0(colnames(features)[wh.TP], "_TP")
colnames(features)[wh.TP] <- newname;
colnames(features)[grep('TP', colnames(features))]
####################
# Run Tweedieverse #
###################
###################
# Default options #
###################
CPLM <-Tweedieverse(
features,
metadata,
output = './demo_output/CPLM') # Assuming demo_output exists
###############################################
# User-defined prevalence-abundance filtering #
###############################################
ZICP<-Tweedieverse(
features,
metadata,
output = './demo_output/ZICP', # Assuming demo_output exists
base_model = 'ZICP',
abd_threshold = 0.0,
prev_threshold = 0.2)
####################################
# User-defined variance filtering #
####################################
sds<-apply(features, 2, sd)
var_threshold = median(sds)/2
ZSCP<-Tweedieverse(
features,
metadata,
output = './demo_output/ZSCP', # Assuming demo_output exists
base_model = 'ZSCP',
var_threshold = var_threshold)
##################
# Multiple cores #
##################
ZACP<-Tweedieverse(
features,
metadata,
output = './demo_output/ZACP', # Assuming demo_output exists
base_model = 'ZACP',
cores = 4)
##########################################################################
# Example 2 - Multivariable Association on HMP2 Longitudinal Microbiomes #
##########################################################################
######################
# HMP2 input_features Analysis #
######################
#############
# Load input_features #
#############
library(data.table)
input_features <- fread("https://raw.githubusercontent.com/biobakery/Maaslin2/master/inst/extdata/HMP2_taxonomy.tsv", sep ="\t")
input_metadata <-fread("https://raw.githubusercontent.com/biobakery/Maaslin2/master/inst/extdata/HMP2_metadata.tsv", sep ="\t")
###############
# Format data #
###############
library(tibble)
features<- column_to_rownames(input_features, 'ID')
metadata<- column_to_rownames(input_metadata, 'ID')
#############
# Fit Model #
#############
library(Tweedieverse)
HMP2 <- Tweedieverse(
features,
metadata,
output = './demo_output/HMP2', # Assuming demo_output exists
fixed_effects = c('diagnosis', 'dysbiosisnonIBD','dysbiosisUC','dysbiosisCD', 'antibiotics', 'age'),
random_effects = c('site', 'subject'),
base_model = 'CPLM',
adjust_offset = FALSE, # No offset as the values are relative abundances
cores = 8, # Make sure your computer has the capability
standardize = FALSE,
reference = c('diagnosis,nonIBD'))
}
}
\author{
Himel Mallick, \email{him4004@med.cornell.edu}
}
\keyword{metagenomics,}
\keyword{microbiome,}
\keyword{multiomics,}
\keyword{scRNASeq,}
\keyword{singlecell}
\keyword{tweedie,}