[e25014]: / man / facet_density_foldchange.Rd

Download this file

82 lines (68 with data), 2.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/FacetDensityFoldchange.R
\name{facet_density_foldchange}
\alias{facet_density_foldchange}
\title{Create faceted high-density region plots with optional points and density contours}
\usage{
facet_density_foldchange(
data,
x_var,
y_var,
group_var,
facet_var,
palette,
show_points = FALSE,
show_density = TRUE,
point_size = 2.5,
point_alpha = 0.1,
line_size = 1.6,
cor_method = "pearson",
cor_label_pos = c("left", 0.97),
cor_vjust = NULL
)
}
\arguments{
\item{data}{Data frame containing variables for plotting.}
\item{x_var}{Name of the x-axis variable as a string.}
\item{y_var}{Name of the y-axis variable as a string.}
\item{group_var}{Name of the grouping variable for color mapping as a string.}
\item{facet_var}{Name of the faceting variable.}
\item{palette}{Color palette for the plot as a character vector.}
\item{show_points}{Logical, if TRUE adds scatter points to the plot.}
\item{show_density}{Logical, if TRUE adds filled density contours to the plot.}
\item{point_size}{Size of the points, relevant if show_points is TRUE.}
\item{point_alpha}{Transparency level of the points, relevant if show_points is TRUE.}
\item{line_size}{Size of the regression line.}
\item{cor_method}{Method to calculate correlation ("pearson" or "spearman").}
\item{cor_label_pos}{Vector of length 2 indicating the position of the correlation label (x and y).}
\item{cor_vjust}{Vertical justification for correlation label, default is NULL.}
}
\value{
A `ggplot` object representing the high-density region plot.
}
\description{
This function creates faceted high-density region plots using ggdensity for
adding optional density rug and density contours, and scatter points. It also adds a regression line
and Pearson correlation label. The plot is faceted by a grouping variable.
}
\examples{
combined_df_file <- system.file("extdata", "combined_df.rds", package = "TransProR")
combined_df <- readRDS(combined_df_file)
pal2 = c("#2787e0","#1a9ae0","#1dabbf","#00897b","#43a047","#7cb342")
all_facet_density_foldchange_name1 <- facet_density_foldchange(
data = combined_df,
x_var = "log2FoldChange_1",
y_var = "log2FoldChange_2",
group_var = "name",
facet_var = "name",
palette = pal2,
show_points = TRUE,
show_density = FALSE,
point_size = 2,
point_alpha = 0.1,
line_size = 1.6,
cor_method = "pearson",
cor_label_pos = c("left", "top"),
cor_vjust = 1
)
}