Diff of /man/enrich_circo_bar.Rd [000000] .. [0f2269]

Switch to unified view

a b/man/enrich_circo_bar.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/EnrichCircoBar.R
3
\name{enrich_circo_bar}
4
\alias{enrich_circo_bar}
5
\title{Combine and Visualize Data with Circular Bar Chart}
6
\usage{
7
enrich_circo_bar(data_list)
8
}
9
\arguments{
10
\item{data_list}{A list of data frames to be combined.}
11
}
12
\value{
13
A `ggplot` object representing the Circular Bar Chart.
14
}
15
\description{
16
This function combines multiple data frames, arranges them, and visualizes the combined data
17
in a Circular Bar Chart using the 'ggplot2' and 'ggalluvial' packages.
18
}
19
\examples{
20
# Create sample data frames for each enrichment category
21
22
# 1. Biological Process (BP)
23
filtered_data_BP <- data.frame(
24
  Description = c(
25
    "immune response",
26
    "cell proliferation",
27
    "signal transduction",
28
    "apoptotic process",
29
    "metabolic process"
30
  ),
31
  Count = c(120, 85, 150, 60, 95),
32
  color = c(
33
    "#1f77b4",  # blue
34
    "#ff7f0e",  # orange
35
    "#2ca02c",  # green
36
    "#d62728",  # red
37
    "#9467bd"   # purple
38
  ),
39
  stringsAsFactors = FALSE
40
)
41
42
# 2. Cellular Component (CC)
43
filtered_data_CC <- data.frame(
44
  Description = c(
45
    "nucleus",
46
    "cytoplasm",
47
    "membrane",
48
    "mitochondrion",
49
    "extracellular space"
50
  ),
51
  Count = c(90, 110, 75, 65, 80),
52
  color = c(
53
    "#1f77b4",
54
    "#ff7f0e",
55
    "#2ca02c",
56
    "#d62728",
57
    "#9467bd"
58
  ),
59
  stringsAsFactors = FALSE
60
)
61
62
# 3. Molecular Function (MF)
63
filtered_data_MF <- data.frame(
64
  Description = c(
65
    "protein binding",
66
    "DNA binding",
67
    "enzyme activity",
68
    "transporter activity",
69
    "receptor activity"
70
  ),
71
  Count = c(140, 130, 100, 70, 90),
72
  color = c(
73
    "#1f77b4",
74
    "#ff7f0e",
75
    "#2ca02c",
76
    "#d62728",
77
    "#9467bd"
78
  ),
79
  stringsAsFactors = FALSE
80
)
81
82
# 4. Disease Ontology (DO)
83
filtered_data_DO <- data.frame(
84
  Description = c(
85
    "cancer",
86
    "cardiovascular disease",
87
    "neurological disorder",
88
    "metabolic disease",
89
    "infectious disease"
90
  ),
91
  Count = c(200, 150, 120, 90, 160),
92
  color = c(
93
    "#1f77b4",
94
    "#ff7f0e",
95
    "#2ca02c",
96
    "#d62728",
97
    "#9467bd"
98
  ),
99
  stringsAsFactors = FALSE
100
)
101
102
# 5. Reactome Pathways
103
filtered_data_Reactome <- data.frame(
104
  Description = c(
105
    "Cell Cycle",
106
    "Apoptosis",
107
    "DNA Repair",
108
    "Signal Transduction",
109
    "Metabolism of Proteins"
110
  ),
111
  Count = c(110, 95, 80, 130, 85),
112
  color = c(
113
    "#1f77b4",
114
    "#ff7f0e",
115
    "#2ca02c",
116
    "#d62728",
117
    "#9467bd"
118
  ),
119
  stringsAsFactors = FALSE
120
)
121
122
# 6. KEGG Pathways
123
filtered_data_kegg <- data.frame(
124
  Description = c(
125
    "PI3K-Akt signaling pathway",
126
    "MAPK signaling pathway",
127
    "NF-kappa B signaling pathway",
128
    "JAK-STAT signaling pathway",
129
    "Toll-like receptor signaling pathway"
130
  ),
131
  Count = c(175, 160, 145, 130, 155),
132
  color = c(
133
    "#1f77b4",
134
    "#ff7f0e",
135
    "#2ca02c",
136
    "#d62728",
137
    "#9467bd"
138
  ),
139
  stringsAsFactors = FALSE
140
)
141
142
# Combine all filtered data frames into a list
143
data_list <- list(
144
  BP = filtered_data_BP,
145
  CC = filtered_data_CC,
146
  MF = filtered_data_MF,
147
  DO = filtered_data_DO,
148
  Reactome = filtered_data_Reactome,
149
  KEGG = filtered_data_kegg
150
)
151
152
# Create the Circular Bar Chart
153
combined_and_visualized_data <- enrich_circo_bar(data_list)
154
155
}