|
a |
|
b/man/Wilcoxon_analyze.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/WilcoxonAnalyze.R |
|
|
3 |
\name{Wilcoxon_analyze} |
|
|
4 |
\alias{Wilcoxon_analyze} |
|
|
5 |
\title{Differential Gene Expression Analysis Using Wilcoxon Rank-Sum Test} |
|
|
6 |
\usage{ |
|
|
7 |
Wilcoxon_analyze( |
|
|
8 |
tumor_file, |
|
|
9 |
normal_file, |
|
|
10 |
output_file, |
|
|
11 |
logFC_threshold = 2.5, |
|
|
12 |
fdr_threshold = 0.05 |
|
|
13 |
) |
|
|
14 |
} |
|
|
15 |
\arguments{ |
|
|
16 |
\item{tumor_file}{Path to the tumor data file (RDS format).} |
|
|
17 |
|
|
|
18 |
\item{normal_file}{Path to the normal data file (RDS format).} |
|
|
19 |
|
|
|
20 |
\item{output_file}{Path to save the output DEG data (RDS format).} |
|
|
21 |
|
|
|
22 |
\item{logFC_threshold}{Threshold for log fold change for marking up/down-regulated genes.} |
|
|
23 |
|
|
|
24 |
\item{fdr_threshold}{Threshold for FDR for filtering significant genes.} |
|
|
25 |
} |
|
|
26 |
\value{ |
|
|
27 |
A data frame of differential expression results. |
|
|
28 |
} |
|
|
29 |
\description{ |
|
|
30 |
This function performs differential gene expression analysis using Wilcoxon rank-sum tests. |
|
|
31 |
It reads tumor and normal expression data, performs TMM normalization using 'edgeR', and uses Wilcoxon rank-sum tests to identify differentially expressed genes. |
|
|
32 |
} |
|
|
33 |
\examples{ |
|
|
34 |
# Define file paths for tumor and normal data from the data folder |
|
|
35 |
tumor_file <- system.file("extdata", |
|
|
36 |
"removebatch_SKCM_Skin_TCGA_exp_tumor_test.rds", |
|
|
37 |
package = "TransProR") |
|
|
38 |
normal_file <- system.file("extdata", |
|
|
39 |
"removebatch_SKCM_Skin_Normal_TCGA_GTEX_count_test.rds", |
|
|
40 |
package = "TransProR") |
|
|
41 |
output_file <- file.path(tempdir(), "Wilcoxon_rank_sum_testoutRst.rds") |
|
|
42 |
|
|
|
43 |
# Run the Wilcoxon rank sum test |
|
|
44 |
outRst <- Wilcoxon_analyze( |
|
|
45 |
tumor_file = tumor_file, |
|
|
46 |
normal_file = normal_file, |
|
|
47 |
output_file = output_file, |
|
|
48 |
logFC_threshold = 2.5, |
|
|
49 |
fdr_threshold = 0.01 |
|
|
50 |
) |
|
|
51 |
|
|
|
52 |
# View the top 5 rows of the result |
|
|
53 |
head(outRst, 5) |
|
|
54 |
} |
|
|
55 |
\references{ |
|
|
56 |
Li, Y., Ge, X., Peng, F., Li, W., & Li, J. J. (2022). Exaggerated False Positives by Popular |
|
|
57 |
Differential Expression Methods When Analyzing Human Population Samples. Genome Biology, 23(1), 79. |
|
|
58 |
DOI: https://doi.org/10.1186/s13059-022-02648-4. |
|
|
59 |
} |