--- a +++ b/man/DESeq2_analyze.Rd @@ -0,0 +1,66 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/DESeq2Analyze.R +\name{DESeq2_analyze} +\alias{DESeq2_analyze} +\title{Differential Gene Expression Analysis using 'DESeq2'} +\usage{ +DESeq2_analyze( + tumor_file, + normal_file, + output_file, + logFC = 2.5, + p_value = 0.01 +) +} +\arguments{ +\item{tumor_file}{Path to the tumor data file (RDS format).} + +\item{normal_file}{Path to the normal data file (RDS format).} + +\item{output_file}{Path to save the output DEG data (RDS format).} + +\item{logFC}{Threshold for log fold change.} + +\item{p_value}{Threshold for p-value.} +} +\value{ +A data frame of differential expression results. +} +\description{ +'DESeq2': Differential gene expression analysis based on the negative binomial distribution. +This function utilizes the 'DESeq2' package to conduct differential gene expression analysis. +It processes tumor and normal expression data, applies DESeq2 analysis, +and outputs the results along with information on gene expression changes. +} +\details{ +The DESeq2 methodology is based on modeling count data using a negative binomial distribution, +which allows for handling the variability observed in gene expression data, especially in +small sample sizes. This approach is well-suited for RNA-Seq data analysis. +} +\examples{ +# Define file paths for tumor and normal data from the data folder +tumor_file <- system.file("extdata", + "removebatch_SKCM_Skin_TCGA_exp_tumor_test.rds", + package = "TransProR") +normal_file <- system.file("extdata", + "removebatch_SKCM_Skin_Normal_TCGA_GTEX_count_test.rds", + package = "TransProR") +output_file <- file.path(tempdir(), "DEG_DESeq2.rds") + +DEG_DESeq2 <- DESeq2_analyze( + tumor_file = tumor_file, + normal_file = normal_file, + output_file = output_file, + 2.5, + 0.01 +) + +# View the top 5 rows of the result +head(DEG_DESeq2, 5) + +} +\references{ +DESeq2:Differential gene expression analysis based on the negative binomial distribution. +For more information, visit the page: +https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/ +}