--- a +++ b/R/MergeDensityFoldchange.R @@ -0,0 +1,86 @@ +#' Create high-density region plot with optional points, density rugs, and contours +#' +#' This function creates a high-density region plot using hdr methods to +#' add density rug and filled contours. It also adds a regression line +#' and Pearson correlation label. Points can be added to the plot optionally. +#' +#' @param data Data frame containing variables for plotting. +#' @param x_var Name of the x-axis variable as a string. +#' @param y_var Name of the y-axis variable as a string. +#' @param group_var Name of the grouping variable for color mapping as a string. +#' @param palette Color palette for the plot as a character vector. +#' @param show_points Logical, if TRUE adds points to the plot. +#' @param point_size Size of the points, relevant if show_points is TRUE. +#' @param point_alpha Transparency level of the points, relevant if show_points is TRUE. +#' @param x_lim Numeric vector of length 2, giving the x-axis limits. +#' @param y_lim Numeric vector of length 2, giving the y-axis limits. +#' @param cor_method Method to calculate correlation ("pearson" or "spearman"). +#' @param line_size Size of the smoothing line. +#' @param cor_label_pos Vector of length 2 indicating the position of the correlation label (x and y). +#' @return A ggplot object representing the high-density region plot. +#' @importFrom ggplot2 ggplot aes_string geom_point geom_smooth scale_fill_manual scale_color_manual scale_x_continuous scale_y_continuous theme element_rect margin +#' @importFrom hrbrthemes theme_ipsum +#' @importFrom grid unit +#' @importFrom ggdensity geom_hdr geom_hdr_rug +#' @importFrom ggpubr stat_cor +#' @examples +#' combined_df_file <- system.file("extdata", "combined_df.rds", package = "TransProR") +#' combined_df <- readRDS(combined_df_file) +#' pal1 = c("#3949ab","#1e88e5","#039be5","#00897b","#43a047","#7cb342") +#' +#' all_density_foldchange_name1 <- merge_density_foldchange( +#' data = combined_df, +#' x_var = "log2FoldChange_1", +#' y_var = "log2FoldChange_2", +#' group_var = "name", +#' palette = pal1, +#' show_points = FALSE, +#' point_size = 2.5, +#' point_alpha = 0.1, +#' x_lim = c(0, 20), +#' y_lim = c(0, 20), +#' cor_method = "pearson", +#' line_size = 1.6, +#' cor_label_pos = c("left", "top") +#' ) +#' +#' @export +merge_density_foldchange <- function(data, x_var, y_var, group_var, + palette = c("#3949ab","#1e88e5","#039be5","#00897b","#43a047","#7cb342"), + show_points = FALSE, point_size = 2.5, point_alpha = 0.2, + x_lim = c(0, 20), y_lim = c(0, 20), + cor_method = "pearson", line_size = 1.6, + cor_label_pos = c("left", 0.97)) { + # Begin constructing the ggplot + plot <- ggplot2::ggplot(data, ggplot2::aes_string(x = x_var, y = y_var, fill = group_var)) + + # Optionally add points + if (show_points) { + plot <- plot + ggplot2::geom_point(ggplot2::aes_string(color = group_var), shape = 21, + size = point_size, alpha = point_alpha) + } + + # Add density rug and contours + plot <- plot + ggdensity::geom_hdr_rug() + ggdensity::geom_hdr() + + # Add regression line and correlation label + plot <- plot + + ggplot2::geom_smooth(ggplot2::aes_string(x = x_var, y = y_var, color = group_var), + method = 'lm', level = 0.95, size = line_size) + + ggpubr::stat_cor(ggplot2::aes_string(color = group_var), method = cor_method, + label.x.npc = cor_label_pos[1], label.y.npc = cor_label_pos[2]) + + # Customize scales and theme + plot <- plot + + ggplot2::scale_fill_manual(values = palette) + + ggplot2::scale_color_manual(values = palette) + + ggplot2::scale_x_continuous(limits = x_lim, expand = c(0, 0)) + + ggplot2::scale_y_continuous(limits = y_lim, expand = c(0, 0)) + + hrbrthemes::theme_ipsum() + + ggplot2::theme(plot.margin = ggplot2::margin(10, 10, 10, 10), + plot.background = ggplot2::element_rect(fill = "white", color = "white"), + panel.spacing = grid::unit(2, "mm")) + + # Return the ggplot object + return(plot) +}