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Simulation data generation 

To provide data samples with ground truth for evaluation, we followed the approach outlined 

by Townes et al. 1  to use nonnegative spatial factorization to simulate spatial multi-omics data. 

We employed the ‘ggblocks’ model from Townes et al. to generate expression matrices of 

different modalities. For modality 1, we generated a spatial gene expression matrix of 1,296 

cells x 1,000 genes with the zero-inflated negative binomial (ZINB) distribution, featuring 4 

distinct factors. Similarly, we generated a spatial protein expression matrix (modality 2) with 

negative binomial (NB) distribution, dimensions of 1,296 cells x 100 proteins, and featuring 4 

distinct factors. The simulation approach recapitulates the ZINB and NB distributions of spatial 

transcriptomics and proteomics respectively and matches the cells from the two modalities. 

We also added Gaussian distributed noise to both modalities to better mimic real-world 

scenarios. To increase statistical analysis power, we generated 5 simulation datasets with 

different parameters. The summary statistics of the 5 simulation datasets are shown in Table 

S3. 

Benchmarking methods 

To evaluate the performance of SpatialGlue, we compare it with 10 state-of-the-art methods, 

including 7 single-cell multi-omics data integration methods, Seurat 2, totalVI 3, MultiVI 4, 

MOFA+ 5, MEFISTO 6, scMM 7, and StabMap 8, and 3 single-modal methods, SpaGCN 9, 

STAGATE 10, and GraphST 11.  

All of benchmarking methods were executed based on their provided vignettes. For 

Seurat’s data pre-processing of the RNA modality, 2,000 and 3,000 highly variable genes were 

selected for log normalization for the RNA & protein and RNA & ATAC (histone) data, 

respectively. The dimensions of feature reduction were set to 30 and 18 for the RNA and 

protein modalities, respectively. For the RNA & ATAC (histone) data, the dimensions of feature 

reduction were set to 10 for both the RNA and ATAC (histone) modalities. For MOFA+ and 

MEFISTO, the top 2,000 and 5,000 highly variable genes and peaks were chosen for 

normalization for the RNA and ATAC (histone) modality data, respectively. The number of 

factors was set to 10. For totalVI and MultiVI, we employed the scVI package (version 1.0.2) 

for data integration. The input dataset was preprocessed using the standard SCANPY 

workflow. Specifically, the top 4,000 highly variable genes were selected for log-normalization 

when implementing totalVI tool. For MultiVI, genes and peaks expressed in fewer than 1% 

pixels were eliminated for the RNA & epigenome (ATAC, histone) data. We need to highlight 

that totalVI was designed only for CITE-seq. scMM was executed with its default settings. The 

epochs, batch size, and learning rating were set to 50, 32, and 0.0001, respectively. Following 

the tutorial provided by the original paper, we ran StabMap using default settings. SpaGCN, 

STAGATE, and GraphST are deep learning models designed for single-modal spatial 

transcriptomics data. All three models were employed based on the tutorials provided. To 

adapt these methods to spatial multi-omics data, we concatenated the pre-processed 

expression matrices of the RNA and protein/ATAC/histone data as input to obtain latent 

representations. For totalVI, MultiVI, scMM, SpaGCN, STAGATE, and GraphST, after model 

training, we extracted the latent representations to perform clustering with the ‘mclust’ 

algorithm 12. 

 



Downstream analyses 

Spatial clustering. Taking the expression data of different omics modalities as input, 

SpatialGlue outputs an integrated representation of spots/cells. With the output 

representations as input, we applied the ‘mclust’ algorithm 12 to identify spatial domains. We 

tested different numbers of clusters to select the clustering that best capture the known 

biological structures and/or cell types.  

DEG analysis. After obtaining the clustering labels, differential expressed gene (DEG) analysis 

was performed on the identified clusters using Seurat v4.0 2 to identify differentially expressed 

genes, proteins, or peaks. Similarly, tSNE and UMAP plots were generated using the 

integrated representations for visualization.  

Signac. We first performed log-normalization followed by data scaling on the ‘SCT’ assay 

using the Seurat package. To find differentially expressed genes, we used the ‘FindAllMarkers’ 

function with the following parameter settings: logfc.threshold = 0.1, min.pct = 0.1 and 

‘wilcoxon’ test. We then ran Term frequency-inverse document frequency (TF-IDF) 

normalization, FeatureSelection and RunSVD (Singular value decomposition), followed by 

data scaling on the CUT&Tag assay using Signac v1.8.0 13. We estimated the Gene Activity 

scores and used the SpatialGlue’s clustering results to identify differentially expressed genes 

using the Gene Activity Scores using the ‘FindAllMarkers’ function with the following 

parameters settings: logfc.threshold = 0.25, min.pct = 0.25 and ‘wilcoxon’ test.  

ArchR. To estimate the differentially expressed peaks, we employ the ArchR package v1.0.2 
14. We first created ‘arrow’ files using the parameters: minFrags = 0, maxFrags = 1e+07, 

tile_size = 5000, and ‘the mm10’ genome. We computed the dimensionality reduced space 

via IterativeLSI with dims = 1:30 and performed clustering using the standard Seurat 

neighborhood detection method via addClusters, followed by UMAP via the ‘addUMAP’ 

function. We then prepare the spatially resolved ATAC object as follows: the spatial 

information was integrated using Seurat’s ‘Read10X_image’ function to create a 10x 

Genomics Visium object named image containing all the spatial folder information. We then 

filtered out the off-tissue pixels in both the image object and in the ArchR object. The gene 

score matrix containing all gene accessibility scores and metadata including the computed 

SpatialGlue clusters was then extracted, and the image object is added.   

We next generated a reproducible peak set in ArchR using the ‘addReproduciblePeakSet’ 

function and called the peaks using MACS2 15. The differentially expressed peaks were then 

identified for the SpatialGlue’s clusters in the ‘PeakMatrix’ with the ‘getMarkerFeatures’ 

function. Marker genes with differential gene scores were also computed from the 

‘GeneScoreMatrix’ using the same function. Finally, we computed the linkage between genes 

and peaks using the ‘addPeak2GeneLinks’ function with the ‘Iterative LSI’ reductions and 

‘GeneScoreMatrix’ values. We ran the ‘addPeak2GeneLinks’ function with the following 

settings: corCutOff = 0.45 and resolution = 1,000.  

Evaluation metrics 

To evaluate the data integration performance of the model, we used eight quantitative metrics, 

of which six are supervised metrics (AMI, NMI, ARI, homogeneity, mutual information, and V-

measure), and two unsupervised metrics (Jaccard similarity and Moran’s I score). The 

supervised metrics were computed using the scikit-learn 16 package in Python. 

Jaccard similarity. Similar to the metric employed by Ghazanfar et al. 8, for spot 𝑖 , we 

separately extract the sets 𝑁𝑖𝑚 and 𝑁𝑖𝑒 of size 𝑘 (default 50) containing the nearest spots in 

the 𝑚 -th modality and embedding space, that is, 𝑁𝑖𝑚 =



{𝑠𝑒𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑝𝑎𝑐𝑒 𝑚, 𝑠. 𝑡.  𝑟𝑎𝑛𝑘(𝐷(𝑍𝑖𝑚 , 𝑍𝑗𝑚)) ≤ 𝑘} , where 𝐷(𝑎, 𝑏)  is the 

Euclidean distance of vectors 𝑎 and 𝑏. The Jaccard similarity is thus:  

𝐽𝑖 = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑁𝑖𝑚, 𝑁𝑖𝑒) =
|𝑁𝑖𝑚∩𝑁𝑖𝑒|

|𝑁𝑖𝑚∪𝑁𝑖𝑒|
 . 

A larger value of 𝐽𝑖 means greater similarity between the integrated representation and the 𝑚-

th modality data.  

Moran’s I score. Moran’s  𝐼 score was calculated using the Squidpy package (Palla et al.17). 

Briefly, given a feature (gene or label) and the spatial location of observations, Moran’s 𝐼 score 

assesses whether the pattern expressed is clustered, dispersed, or random (Getis et al.18). 

Specifically, Moran’s 𝐼 is defined as: 
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where 𝑧𝑖  is the deviation of the feature from the mean (𝑥𝑖 − �̃�), 𝑤𝑖,𝑗  is the spatial weight 

between observations, 𝑛 is the number of spatial units, and 𝑊 is the sum of all 𝑤𝑖,𝑗. A higher 

value of Moran’s I score corresponds to a more centralized spatial pattern.  

Neighborhood enrichment and co-occurrence. To assess the spatial relationships between 

clusters, we calculate neighborhood enrichment and co-occurrence scores with the Squidpy 
17 package. First, we applied the ‘mclust’ algorithm on the output representation of SpatialGlue 

to obtain spatial clusters. With the spatial clusters as input, we calculated the co-occurrence 

score of each cluster using Squidpy. For neighborhood enrichment analysis to evaluate spatial 

autocorrelations of clusters, we used the spatial clusters and coordinates as input to Squidpy.  

Ablation studies 

Here we performed a series of ablation studies to illustrate the impact of different components 

in the SpatialGlue model on performance. We first considered the use of attention (A) over 

concatenation (C) in integrating information. We created three variants of SpatialGlue (AC, 

CA, CC). The variants CA and CC clearly showed deterioration in capturing the original data 

and AC was the closest in performance to SpatialGlue (Figure S5c). This was also reflected 

in the computed supervised metrics (Figure S5d). We next demonstrated the importance of 

spatial information by feeding in data without spatial information. Without spatial information, 

the output of the variant was much noisier than that of SpatialGlue (Figure S5e). The metrics 

also showed that this variant performed worse (Figure S5f). Finally, we fed the original data 

into SpatialGlue and found no performance difference (Figure S5g,h). This suggested that 

PCA pre-processing does not negatively impact performance while offering the benefit of 

reduced data dimension and hence reduce memory requirements and speed up subsequent 

computation.  

 Finally, we also tested SpatialGlue alongside single-modal methods with simple data 

concatenation of simulated and experimentally acquired data. With simulated data, GraphST 

and SpatialGlue achieved similar performance while STAGATE and SpaGCN’s outputs were 

noisier (Figure S6b,c). The second test employed the P22 mouse brain data with RNA-Seq 

and ATAC-Seq modalities (Figure S6d,c,e). STAGATE’s output showed high levels of 

smoothing (Moran’s I score) but lowest similarity to the data modalities (lowest Jaccard 

Similarity). SpaGCN achieved the lowest Moran’s I score and also failed to delineate the cortex 

layers. GraphST and SpatialGlue obtained similar Moran’s I score but SpatialGlue was the 

overall best in terms of Jaccard Similarity. Visually, SpatialGlue was also able to capture the 

cortex layers more accurately.  



Sensitivity to parameters   

Using the simulated data, we tested SpatialGlue’s sensitivity to parameter changes, namely 

the number of neighbors k, the number of PCs, and the number of GNN layers. The 

performance of SpatialGlue clearly varies significantly with k increasing both visually and in 

terms of metrics (Figure S7a,b). At relatively small values of k (3 to 6), we consider the 

performance loss to be tolerable. By default, we set k to 3. For number of PCs selected, the 

performance increases with the PCs count increasing but reduces from 25 to 50. The initial 

increase can be attributed to the additional PCs capturing more information while the poor 

performance at 50 is likely due to the higher dimension PCs containing noise instead. We also 

evaluated SpatialGlue’s performance with the number of GNN layers ranging from 1 to 3. Our 

results showed SpatialGlue achieving the best performance with 1 GNN layer. Therefore, we 

use this value as the default in our model.  

Reference 

1. Townes, F. W. & Engelhardt, B. E. Nonnegative spatial factorization applied to spatial 
genomics. Nat. Methods 20, 229–238 (2023). 

2. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-
3587.e29 (2021). 

3. Gayoso, A. et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI. 
Nat. Methods 18, 272–282 (2021). 

4. Ashuach, T. et al. MultiVI: deep generative model for the integration of multimodal 
data. Nat. Methods 20, 1222–1231 (2023). 

5. Argelaguet, R. et al. MOFA+: A statistical framework for comprehensive integration of 
multi-modal single-cell data. Genome Biol. (2020) doi:10.1186/s13059-020-02015-1. 

6. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal 
data using  MEFISTO. Nat. Methods 19, 179–186 (2022). 

7. Minoura, K., Abe, K., Nam, H., Nishikawa, H. & Shimamura, T. A mixture-of-experts 
deep generative model for integrated analysis of single-cell  multiomics data. Cell 
reports methods 1, 100071 (2021). 

8. Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data 
integration using unshared features. Nat. Biotechnol. (2023) doi:10.1038/s41587-023-
01766-z. 

9. Hu, J. et al. SpaGCN: Integrating gene expression, spatial location and histology to 
identify  spatial domains and spatially variable genes by graph convolutional network. 
Nat. Methods 18, 1342–1351 (2021). 

10. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved 
transcriptomics with an  adaptive graph attention auto-encoder. Nat. Commun. 13, 
1739 (2022). 

11. Long, Y. et al. Spatially informed clustering, integration, and deconvolution of spatial  
transcriptomics with GraphST. Nat. Commun. 14, 1155 (2023). 

12. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: Clustering, 
Classification and Density Estimation Using Gaussian Finite  Mixture Models. R J. 8, 
289–317 (2016). 

13. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin 
state analysis with Signac. Nat. Methods 18, 1333–1341 (2021). 



14. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell 
chromatin  accessibility analysis. Nat. Genet. 53, 403–411 (2021). 

15. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 
(2008). 

16. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 
12, 2825–2830 (2011). 

17. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 
19, 171–178 (2022). 

18.     Getis, A. & Ord, J. K. The analysis of spatial association by use of distance 
          statistics. Geogr. Anal. 24, 189–206 (2010). 
  

  



Tables 

 Table S1 Experimental datasets used in the manuscript 

Dataset Name Platform 
Size (spots x 

genes/proteins/peaks) 
Figure  

Dataset1 
Mouse spleen 

replicate1  

SPOTS (RNA-

protein) 

2,568x32,285 

2,568x21 

Figures 3e-l, S24, 

S25a-c 

Dataset2 
Mouse spleen 

replicate2 

SPOTS (RNA-

protein) 

2,768x32,285 

2,768x21 
Figure S25d-h 

Dataset3 Mouse Thymus1 
Stereo-CITE-seq 

(RNA-protein) 

4,697x23,622 

4,697x51 

Figures 3a-d, S16, 

S20a, S21 

Dataset4 Mouse Thymus2 
Stereo-CITE-seq 

(RNA-protein) 

4,253x23,529 

4,253x19 

Figures S17, S20b, 

S22 

Dataset5 Mouse Thymus3 
Stereo-CITE-seq 

(RNA-protein) 

4,646x23,960 

4,646x19 

Figures S18, S20c, 

S23a 

Dataset6 Mouse Thymus4 
Stereo-CITE-seq 

(RNA-protein) 

4,228x23,221 

4,228x19 

Figures S19, S20d, 

S23b 

Dataset7 
Mouse Brain 

RNA ATAC P22 

Spatial-

transcriptome-

epigenome 

9,215x22,914 

9,215x121,068 Figures 2a-e, S12a,c,e 

Dataset8 
Mouse Brain 

RNA H3K4me3 

Spatial-

transcriptome-

epigenome 

9,548x22,731 

9,548x35,270 Figure S14a-e 

Dataset9 
Mouse Brain 

RNA H3K27ac 

Spatial-

transcriptome-

epigenome 

9,370x23,415 

9,370x104,162 
Figures 2f-l, S12b,d,f, 

S13 

Dataset10 
Mouse Brain 

RNA H3K27me3 

Spatial-

transcriptome-

epigenome 

9,752x25,881 

9,752x70,470 Figure S15 

Dataset11 
Human Lymph 

Node A1 

10x Visium (RNA-

protein) 

3,484x18,085 

3,484x31 

Figures 1g-k, S8a-c, 

S9a, S10 

Dataset12 
Human Lymph 

Node D1 

10x Visium (RNA-

protein) 

3,359x18,085 

3,359x31 

Figures S8d-k, S9b, 

S11,  

Dataset13 Simulation 1 
NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figures 1b-f, S1a 

Dataset14 Simulation 2 
NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figure S1b-f 

Dataset15 Simulation 3 
NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figure S2 

Dataset16 Simulation 4 
NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figure S3a-e 

Dataset17 Simulation 5 
NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figure S3f-j 

Dataset18 
Simulation 6 

(triplet omics) 

NSF (Townes et 

al., 2023) 

1,296x1,000 

1,296x100 
Figure S4 

 



           Table S2 Application of methods on datasets 

Datasets Seurat totalVI MultiVI MOFA+ MEFISTO scMM StabMap SpatialGlue 

Dataset1 √ √ √ √ √ √ √ √ 

Dataset2 √ √ √ √ √ √ √ √ 

Dataset3 √ √ √ √ √ √ √ √ 

Dataset4 √ √ √ √ √ √ √ √ 

Dataset5 √ √ √ √ √ √ √ √ 

Dataset6 √ √ √ √ √ √ √ √ 

Dataset7 √ 𝑁. 𝐴. √ √ 𝑁. 𝐴. √ √ √ 

Dataset8 √ 𝑁. 𝐴. √ √ 𝑁. 𝐴. √ √ √ 

Dataset9 √ 𝑁. 𝐴. √ √ 𝑁. 𝐴. √ √ √ 

Dataset10 √ 𝑁. 𝐴. √ √ 𝑁. 𝐴. 𝑁. 𝐴. √ √ 

Dataset11 √ √ √ √ √ √ √ √ 

Dataset12 √ √ √ √ √ √ √ √ 

Dataset13 √ √ √ √ √ √ √ √ 

Dataset14 √ √ √ √ √ √ √ √ 

Dataset15 √ √ √ √ √ √ √ √ 

Dataset16 √ √ √ √ √ √ √ √ 

Dataset17 √ √ √ √ √ √ √ √ 



Table S3. Summary of simulation parameters. Here, “pi” denotes the zero-inflation probability of the ZINB (Zero-Inflated Negative Binomial) 

distribution, “nzprob_nsp” denotes the probability of a “one” (else zero) for nonspatial factors, and “bkg_mean” denotes the negative binomial 

mean for observations that are “zero” in the factors.  “mean” and “std” are mean and standard deviation of the Gaussian distribution, 

respectively. 

Dataset 

Modality 1 Modality 2 

ZINB Gaussian 

dimension 

NB Gaussian 

dimension 

pi nzprob_nsp bkg_mean mean std nzprob_nsp bkg_mean mean std 

Simulation1 0.5 0.2 0.2 2 0.5 1,000 0.25 0.4 2 0.5 100 

Simulation2 0.5 0.2 0.3 2 0.5 1,000 0.25 0.5 2 0.5 100 

Simulation3 0.5 0.2 0.4 2 0.5 1,000 0.25 0.6 2 0.5 100 

Simulation4 0.5 0.2 0.5 2 0.5 1,000 0.25 0.7 2 0.5 100 

Simulation5 0.5 0.2 0.6 2 0.5 1,000 0.25 0.8 2 0.5 100 



Table S4. Summary of technical specifications of different technologies. 

Platform Spatial resolution (µm) 
Distance between 

spots (µm) 
Image area size 

10x Visium & SPOTS 55 100 6.5 x 6.5 mm 

Stereo-seq 0.22 0.5 200 mm2 

Spatial-epigenome-
transcriptome 

20 - 50x50 or 100x100 grid 

 

 


