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Abstract 

Integration of multiple data modalities in a spatially informed manner remains an unmet need for 

exploiting spatial multi-omics data. Here, we introduce SpatialGlue, a novel graph neural network 

with dual-attention mechanism, to decipher spatial domains by intra-omics integration of spatial 

location and omics measurement followed by cross-omics integration. We demonstrate that 

SpatialGlue can more accurately resolve spatial domains at a higher resolution across different 

tissue types and technology platforms, to enable biological insights into cross-modality spatial 

correlations. 
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Main 

Spatial transcriptomics is the next major development in analyzing biological samples since the 

advent of single-cell transcriptomics. Currently, spatial technologies are expanding to spatial 

multi-omics with the simultaneous profiling of different omics on a single tissue section. These 

technologies can be roughly divided into two categories, sequencing-based and imaging-based. 

Sequencing-based techniques include DBiT-seq 1, spatial-CITE-seq 2, spatial-ATAC-RNA-seq 

and CUT&Tag-RNA-seq 3, SPOTS 4, SM-Omics 5, Stereo-CITE-seq 6, spatial RNA-TCR-seq 7, 

and 10x Genomics Xenium 8,while imaging-based techniques include DNA seqFISH+ 9, DNA-

MERFISH based DNA and RNA profiling 10, MERSCOPE 11, and Nanostring CosMx 12. To fully 

utilize spatial multi-omics data to construct a coherent picture of the tissue under study, spatially 

aware integration of heterogeneous data modalities is required. Such multi-omics data integration 

poses a significant challenge as different modalities have feature counts that can vary enormously 

(e.g., number of proteins vs transcripts measured) and possess different statistical distributions. 

This challenge is deepened when integrating spatial information with feature counts within each 

data modality. To our knowledge, there is no tool designed specifically for spatial multi-omics 

acquired from the same tissue section. Existing methods are either unimodal or do not use spatial 

information, except for one tool with functionality for spatial multi-omics integration, MEFISTO, 

which has only been previously demonstrated on single-cell multi-omics or spatial transcriptomics 

separately. Other tools such as STAGATE 13, SpaGCN 14 and GraphST 15 target spatial single 

omics analysis, while Seurat WNN 16, MOFA+ 17, totalVI 18, MultiVI 19, scMM 20, and StabMap 21 

perform multi-omics data integration without employing spatial information. There is consequently 

a great need for spatially aware cross-omics integration methods specifically designed for spatial 

multi-omics. 

Here we introduce SpatialGlue, a graph neural network (GNN) based deep learning model 

that performs spatial multi-omics data analysis (Figure 1a). The input data to SpatialGlue can be 

feature matrices of segmented cells or capture locations (beads, voxels, pixels, bins, or spots), 

with accompanying spatial coordinates. We refer to the cells and the capture locations as spots 

here after for brevity and not to restrict SpatialGlue to any specific technological platform or 

resolution. Conceptually, SpatialGlue employs a dual attention mechanism to achieve data 

integration on two levels, within-modality spatial information and measurement feature integration 

first, and then between-modality multi-omics integration. SpatialGlue first learns a low dimension 

embedding within each modality using spatial and omics data. Within each modality, SpatialGlue 

constructs a spatial proximity graph and a feature similarity graph which are used separately to 

encode the pre-processed expression data into a common low dimension embedding space. Here 

the spatial proximity graph captures spatial relationships between spots, while the feature graph 

captures feature similarities. These constructed graphs possess unique semantic information that 

can be integrated to better capture cellular heterogeneity. However, the different graphs can 

contribute differential importance to each spot, posing a challenge to capture this difference. 

Therefore, we adopted a within-modality attention aggregation layer to adaptively integrate the 

spatial and feature graph-specific representations and derive modality-specific representations. 

Specifically, the model learns graph-specific weights to assign importance to each graph. 

Similarly, the different omics modalities can have distinct and complementary contributions to 

each spot. Thus, we further designed a between-modality attention aggregation layer that learns 



modality-specific importance weights and adaptively integrates the modality-specific 

representations to generate the final cross-modality integrated latent representation. The learned 

weights illustrate the contribution of each modality to the learned latent representation of each 

spot and consequently the demarcation of different spatial domains or cell types. We believe this 

approach enables more accurate integration than summation or concatenation of the feature 

matrices. We validated the importance of attention and other components with a series of ablation 

studies (See Supplementary file). After obtaining SpatialGlue’s integrated multi-omics 

representation, we can then employ clustering to identify biologically relevant spatial domains 

which consist of cells that are coherent spatially and across the measured omics. Such spatial 

domains can range from local clusters of distinct cell states to functionally distinct anatomical 

structures.  

 We first benchmarked SpatialGlue with competing methods using simulation data and 

experimentally acquired data with ground truth labels. With ground truth available, we can assess 

performance with supervised metrics, namely homogeneity, mutual information, v measure, AMI, 

NMI, and ARI. We generated a set of simulated data consisting of two modalities that together 

contained the information of the ground truth (Figure 1b, left). The modalities were designed to 

simulate the transcriptome and proteome, respectively, with the first modality following the zero-

inflated negative binomial (ZINB) distribution and the second following the negative binomial (NB) 

distribution (Figure 1c). For comparison, we tested seven competing methods, Seurat, totalVI, 

MultiVI, MOFA+, MEFISTO, scMM, and StabMap, alongside SpatialGlue. Visually, SpatialGlue 

was able to clearly recover all four spatial factors to closely match the ground truth (Figure 1b). 

Seurat and MEFISTO were able to clearly recover two factors (factors 2 and 4 for Seurat, 3 and 

4 for MEFISTO). Other methods were able to recover some of the factors but with much higher 

levels of noise (factor 2 for totalVI, 1 and 2 for MOFA+, MultiVI, and scMM, 2 and 3 for StabMap). 

The metrics confirmed the visuals with SpatialGlue scoring top in all metrics, followed by Seurat 

and MEFISTO (Figure 1e). We further tested all methods with four more datasets generated with 

modified distribution parameters (Suppl. Figure S1-3) and measured the performance with the 

same metrics, summarizing the results with box plots (Figure 1f). Again, SpatialGlue performed 

the best with little variance between different datasets. Lastly, we have also demonstrated on 

simulation data that the SpatialGlue framework is extensible to three or more modalities (Suppl. 

Figure S4). 

For the second example, we benchmarked SpatialGlue and the same competing methods 

with an in-house human lymph node dataset generated using 10x Genomics Visium RNA and 

protein co-profiling technology (section A1). Here we used the H&E based annotation as the 

ground truth (Figure 1g). In the annotation, the major structures include the pericapsular adipose 

tissue and capsule that form the outer layers of the bulb, while the cortex and medulla (cords and 

vessels) form the core internal structures. For comparison, we also plotted the single modality 

PCA-based clustering of RNA and protein (Figure 1h, left). All the methods were able to isolate 

the paracortex (T cell zone, SpatialGlue cluster 1) that more resembled the RNA and protein 

specific modalities than the H&E annotation, which is unsurprising because T cells can be better 

identified by protein and gene markers such CD8A, CD3E, and CCR7 (Suppl. Figure S10). The 

methods were also unable to differentiate capsule layers from the pericapsular adipose tissue, 

which were also not well captured in the RNA and protein modalities either. Among the tested 



methods, SpatialGlue, Seurat, totalVI, and MOFA+ were able to identify the follicle regions while 

MultiVI, scMM, MEFISTO, and StabMap could not. The hilum, which normally accumulates fat, is 

only visible in the RNA modality and only MOFA+ and SpatialGlue could separate it from the 

pericapsular layer. To assess performance quantitatively, we employed both unsupervised and 

supervised metrics. We first used the unsupervised Moran’s I score and Jaccard Similarity to 

assess spatial autocorrelation of clusters and preservation of distance in the joint latent space, 

respectively. The Moran’s I score was computed for each cluster and plotted as a box plot for 

each method. SpatialGlue outperformed all other methods with a median score of 0.62 (Figure 

1i). We computed a Jaccard Similarity score to quantify the overlap of neighbor sets between the 

joint space and each modality. Summed together, the total Jaccard Similarity of SpatialGlue also 

outperformed the other methods with MOFA+ as a close second (Figure 1j). For the supervised 

metrics computed with respect to the ground truth, SpatialGlue likewise outperformed all other 

methods with 6 clusters (Suppl. Figure S8c). We further generated different numbers of clusters 

and the resulting box plots of supervised metrics showed results stability regardless of clustering 

resolution (Figure 1k). To ensure that the results were not predicated on a specific tissue section, 

we applied the same methods to another human lymph node section (D1). With this data, 

SpatialGlue showed comparable scores with 6 clusters, but achieved more stable performance 

across different clustering resolutions than other methods (Figure S8). 

Next, we applied SpatialGlue to mouse brain epigenome-transcriptome datasets to 

showcase its ability to resolve spatial domains at a higher resolution than methods used in the 

original study. We first tested SpatialGlue on a P22 mouse brain coronal section dataset acquired 

using spatial ATAC-RNA-seq 3 to measure mRNA and open chromatin regions. We employed the 

Allen brain atlas reference to annotate anatomical regions such as the cortex layers (ctx), genu 

of corpus callosum (ccg), lateral septal nucleus (ls), and nucleus accumbens (acb) (Figure 2a). 

For benchmarking, we tested SpatialGlue against Seurat, MultiVI, MOFA+, scMM, and StabMap. 

We did not include MEFISTO and totalVI because we could not finish running MEFISTO within 

12 hours, and totalVI was designed only for CITE-seq. We first visualized the individual modalities 

(Figure 2b), where we see that they captured various regions with differing accuracy. While both 

modalities captured the lateral ventricle (vl) and the lateral preoptic area (lpo), the RNA modality 

clearly captured the ccg and olfactory limb of the anterior commissure (aco) but was unable to 

differentiate the ctx layers. Meanwhile, the ATAC modality was able to isolate the caudoputamen 

(cp) as well as some of the ctx layers. SpatialGlue captured all of the aforementioned anatomical 

regions (2-acb, 4-cp/13-cp, 9-vl, 11-ccg/aco, 12-ls, 18-lpo) and produced better defined layers in 

the ctx and anterior cingulate area (aca) regions. Notably, SpatialGlue was able to differentiate 

more ctx layers than all other methods including the original analysis by Zhang et al. Seurat was 

able to capture the vl, acb, cp, and ctx layers, making it the second-best method. While the other 

methods could only capture the ccg and a few of the other structures. In general, the outputs of 

competing methods presented more noise than SpatialGlue, which is quantitatively confirmed by 

the Moran’s I score (Figure 2c). For the Jaccard Similarity, SpatialGlue again ranked top (Figure 

2d). We next examined the cross-modality and intra-modality weights learned by SpatialGlue in 

the aggregation layers. These weights denote the contribution of individual modality’s features 

and spatial information towards the integrated output (Figure 2e, Suppl. Figure S12c). For the 

cross-modality weights, the RNA modality better segregated the ccg/aco region and thus was 



assigned a heavier weight. While for the ctx and vl, the ATAC modality showed more contribution 

and thus a heavier weight was assigned.  

We extended the analysis to another P22 mouse brain dataset of a highly similar coronal 

section but with RNA-seq and CUT&Tag (H3K27ac histone modification) modalities. This dataset 

also does not have an annotated ground truth; we therefore again used the Allen brain atlas 

reference for annotation. In this dataset, SpatialGlue captured the major structures of the ctx 

layers (clusters 1,2,5,6,12), 8-aca, 10-ccg/aco, cp (7,14), vl (9,16), 3-ls, and 4-acb (Figure 2f). All 

other methods were unable to clearly capture many structures such as the acb and ls. The output 

of SpatialGlue also had the least noise, which was also reflected in Moran’s I score (Figure 2g). 

For the Jaccard Similarity, SpatialGlue achieved the highest score, highlighting that SpatialGlue’s 

integrated output was able to best preserve the between-spot distance from the original individual 

data modalities (Figure 2h). We also examined the modality weights for the contribution of the 

different modalities towards each cluster (Figure 2i). For most clusters, the histone modification 

modality made similar or greater contribution. Most notable is the vl structure (cluster 9, 16), which 

is strongly visible in the histone modification modality plot. To ensure that the results were not 

contingent on dataset selection, we again tested on two other P22 mouse brain dataset with RNA-

seq and CUT&Tag (H3K4me3 and H3K27me3 histone modification) modalities. SpatialGlue was 

again the top method in both Moran’s I score and Jaccard Similarity for these datasets (Figure 

S14,15).   

We further analyzed the DEGs of each cluster (Figure 2j) and found known markers for 

the different brain regions such as myelin related genes, Tspan2, Cldn11, and Ugt8a, expressed 

in the post-natal developing corpus callosum (10-ccg/aco), and Olfm1, Cux2, Rorb in the cortex 

layers. We next examined the differential expressed peaks in the H3K27ac histone modification 

modality (Figure 2k), where we found strong peaks in the clusters 12-ctx, 10-ccg/aco, 4-acb, and 

7-cp. Finally, we plotted the peak-to-gene links heatmap (Figure 2l). Here, there are two major 

groups appearing in both data modalities, the first primarily consisting of acb/cp structures (4-acb, 

7-cp, and 14-cp), and the second of ctx-related clusters (6-ctx, 11-ctx, and 12-ctx). This illustrates 

SpatialGlue’s success in combining information from both modalities into the latent space to 

enable biologically relevant clusters. We believe such information combination has also 

contributed to the detection of the 4 cortical layers (cluster 5, 12, 1, 6). Within the cortex layers 5 

and 6 (cluster 6), Tle4, Fezf2, Foxp2, and Ntsr1 have been reported in literature as markers. 

However, we only found Tle4 and Fezf2 expression to spatially coincide with the cluster. 

Conversely, Ntsr1’s gene activity score inferred from the histone marks matched the cluster 

spatially (Suppl. Figure S13). This illustrated the different information within each modality that 

SpatialGlue can leverage to better demarcate different spatial domains. 

Lastly, we demonstrated that SpatialGlue is broadly applicable to a wide spectrum of 

technology platforms by further applying it to Stereo-CITE-seq and SPOTS acquired data. The 

Stereo-CITE-seq 6 was used to analyze a mouse thymus section, capturing mRNA and protein at 

sub-cellular resolution (Figure 3a left). The thymus is a small gland surrounded by a capsule of 

fibers and collagen). It is divided into two lobes connected by a connective isthmus with each lobe 

being broadly divided into a central medulla surrounded by an outer cortex layer. In each data 

modality, broad outlines of the medulla regions and the surrounding cortex could be seen (Figure 



3a). We tested eight methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 

SpatialGlue. MultiVI and StabMap were unable to find coherent clusters that resembled the 

medulla and cortex regions within the thymus. This is clearly reflected in the Moran’s I score and 

Jaccard Similarity with these two methods scoring the lowest (Figure 3b,c). Seurat, totalVI, scMM, 

and SpatialGlue were more successful in capturing the internal structures by separating the 

medulla from the cortex, with SpatialGlue and scMM better demarcating the CMJ and the inner, 

middle, and outer cortex (clusters 2, 3, 4, 5). Overall, SpatialGlue scored the highest in Jaccard 

Similarity and second in Moran’s I score. This superior performance was further replicated with 

three additional mouse thymus sections (Suppl. Figures S17, 18, 19). For most clusters, the RNA 

modality made greater contributions than the protein (Figure 3d). But for the inner cortex (cluster 

3), the protein modality contributed more and its contribution to distinguishing the inner cortex is 

visible in the protein modality spatial plot (Figure 3a left).  

Finally, we benchmarked SpatialGlue’s capabilities with murine spleen spatial profiling 

data consisting of protein and transcript measurements 4. The spleen is an important organ within 

the lymphatic system with functions including B cell maturation in germinal centers formed within 

B cell follicles (Figure 3e). These are complex structures with an array of immune cells present. 

The data was generated using SPOTS that employs the 10x Genomics Visium technology to 

capture whole transcriptomes and extracellular proteins via polyadenylated antibody-derived tag-

conjugated (ADT-conjugated) antibodies. The protein detection panel used for this experiment 

was designed to detect the surface markers of B cells, T cells, and macrophages which are well 

represented in the spleen. After preprocessing, we performed clustering of each data modality 

and plotted the clusters on the tissue slide to examine their correspondence between modalities 

(Figure 3f, left). The clusters clearly did not align, indicating that each modality possessed different 

information content (Suppl. Figure S24f, g). Using the protein markers and DEGs, clusters of 

spots enriched with B cells, T cells, and macrophage subsets were annotated 22–24. Specifically, 

we identified macrophage subsets (RpMΦ, MZMΦ, MMMΦ) that were not annotated in the 

original study. We tested Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 

SpatialGlue (Figure 3f). MultiVI and StabMap did not capture coherent clusters. This was also 

reflected in their Moran’s I scores and Jaccard Similarity (Figure 3g, h). The remaining methods 

captured clusters with similar Moran’s I score but SpatialGlue scored the highest in Jaccard 

Similarity. We then examined SpatialGlue’s learned modality weights (Figure 3i). The protein 

modality made the bigger contribution to the MMMΦ cluster, which was mainly found in the protein 

modality plot. Conversely, SpatialGlue relied more on the RNA modality to capture the T cell 

cluster. To verify SpatialGlue performance, we used another SPOTS acquired dataset of a murine 

spleen section as replicate. Here, SpatialGlue achieved comparable or greater Moran’s I score 

than baseline methods and scored the highest in terms of Jaccard Similarity (Figure S25e, f).  

To annotate the clusters found with SpatialGlue, we visualized the cell types’ protein 

markers (Figure 3j, k) and RNA expression of select markers (Figure 3l). Within the white pulp 

zone, the T cell spots were known to concentrated in small clusters known as T cell zones while 

the B cell enriched spots were mainly found in areas adjacent to the T cell clusters. The RpMΦ 

markers were unsurprisingly the strongest in the red pulp zone, being easily identifiable with 

markers like F4_80 and CD163. To differentiate MZMΦ and MMMΦ, the RNA expression of 

Cd209a (MZMΦ) and Siglec1 (MMMΦ) were used to guide the annotation.  



From the cluster and marker visualization, we observed cell types which were spatially 

adjoining. Thus, we quantitated the spatial relationship by computing neighborhood enrichment 

(Suppl. Figure S24d) and co-occurrence scores with respect to distance from the T and B cell 

perspectives (Suppl. Figure S24e). In general, we observed neighborhood enrichments that 

matched known biology such as the high correlation between the B and T cells, indicating that 

they are most likely to be found together at the closest distance. This was followed by MMMΦ 

which surrounded T and B cell clusters in the white zone. These reflected the layers of cell types 

that form the follicles and their surroundings. Between the macrophages, we see positive 

correlation between RpMΦ and MZMΦ, and MZMΦ and MMMΦ. This is a result of the red pulp 

(RpMΦ) forming the spleen’s outer layer and the MZMΦ being positioned within the marginal zone 

surrounding white pulp which in turn was enriched with MMMΦ.  

SpatialGlue is a novel deep learning model incorporating graph neural networks with dual 

attention mechanisms that enables integration of multi-omics data in a spatially aware manner. 

With the presented examples, we demonstrated SpatialGlue’s ability to effectively integrate 

multiple data modalities with their respective spatial context to reveal histologically relevant 

structures of tissue samples. Furthermore, our quantitative benchmarking demonstrated that 

SpatialGlue exhibits superior performance to 10 state-of-the-art unimodal and non-spatial 

methods on 5 simulated data and 12 real datasets, highlighting the importance of spatial 

information and cross-omics integration. We also demonstrated SpatialGlue's ability to resolve 

finer grained tissue structures, which can facilitate novel biological findings in future studies. For 

example, its application to mouse brain epigenome-transcriptome data revealed finer cortical 

layers compared to the original study, which can allow further investigation of gene regulation at 

a higher spatial resolution. Our examples also spanned four different tissue types and four 

technology platforms to show its broad applicability. Despite having demonstrated its application 

only on sequencing-based spatial omics data, its design allows seamless extension to image-

based omics data from technology platforms like 10x Genomics Xenium and Nanostring CosMx, 

exhibiting a technology-agnostic nature. 

As a graph neural network (GNN)-based method, SpatialGlue bears such similarity to 

other GNN methods such as GraphST and SpaGCN. Naturally, as a method tailored for spatial 

multi-omics, it is different as it is explicitly designed to take in multiple data modalities as input 

and employ attention to integrate data, as opposed to concatenation at data preprocessing. Unlike 

other existing multi-modal methods such as Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, 

and StabMap, our model is spatially informed and it adopts attention mechanism to adaptively 

learn the relative importance between omics modalities, and between spatial location and omics 

feature within each modality.   

We also designed SpatialGlue to be computation resource efficient and thus relevant as 

data sizes increase. The largest dataset tested contained 9,752 spots (spatial-epigenome-

transcriptome mouse brain), and it required about 5 mins of wall-clock time on a server equipped 

with an Intel Core i7-8665U CPU and NVIDIA RTX A6000 GPU. It scales well with number of 

features and cells/spots (as shown in Suppl. Figure S7g). Therefore, we believe SpatialGlue will 

be an invaluable analysis tool for present and future spatial multi-omics data. Most technologies 

can produce accompanying imaging data such as H&E, which contains essential information of 



the cell and tissue morphology. The integration of image modality is currently lacking in 

SpatialGlue. In future, we plan to extend SpatialGlue to incorporate image data at either the intra- 

or inter-modality attention aggregation layer. We also plan to extend SpatialGlue’s functionality 

with integration of multi-omics data acquired from adjacent tissue sections.  

Methods 

Data 

Human lymph node dataset For spatial transcriptomics analysis of human tissues, two sequential 

sections of 5 µm thickness were utilized from formalin-fixed, paraffin-embedded (FFPE) lymph 

node. The sections underwent spatial transcriptomic library construction using CytAssist Visium 

platform (10x Genomics). Initially, sections were stained with Hematoxylin and Eosin (H&E) 

following the protocol outlined in the Visium CytAssist guide for FFPE samples, which includes 

steps for deparaffinization, staining, imaging, and decrosslinking (Reference: CG000658, 10x 

Genomics, CA, USA). Imaging was performed with a 20x objective on an EVOS M7000 

microscope (Thermo). 

Following imaging, spatial gene expression libraries were prepared utilizing probe-based 

methods, along with spatial protein expression libraries as per the guidelines provided in the 

Visium CytAssist Reagent Kits manual (Reference: CG000494, 10x Genomics, CA, USA). We 

employed the Visium Human Transcriptome Probe Set version 2.0 for RNA transcript detection, 

along with the Human FFPE Immune Profiling Panel, which includes a 35-plex CytAssist Panel 

of antibodies, both intracellular and extracellular, sourced from BioLegend and Abcam for protein 

detection. This panel also comprises four isotype controls. Antibody signals were normalized to 

isotype controls.  

 Libraries were sequenced on an Illumina NovaSeq S2 PE50 platform, allocating 2000 

million reads per lane at the NUSeq Core Facility, Northwestern University. The resultant FASTQ 

files were processed using the spaceranger-2.1.0 software, referencing the GRCh38 human 

genome (GENCODE v32/Ensembl 98). For precise anatomical context, we conducted manual 

annotation of the lymph node structures, utilizing the high-resolution images captured by the 

EVOS M7000 microscope within the Loupe Browser software (10x Genomics, CA, USA). 

Spatial-epigenome-transcriptome mouse brain dataset Brain tissue sections from a juvenile (P22) 

mouse was analyzed for the epigenome and transcriptome using spatial-ATAC-RNA-seq and 

CUT&Tag-RNA-seq by Zhang et al. 3. Microfluidic barcoding was used to capture spatial location 

and combined with in situ Tn5 transposition chemistry to capture chromatin accessibility. We used 

four datasets, one spatial-ATAC-RNA-seq dataset and three spatial CUT&Tag-RNA-seq 

datasets. The number of pixels ranged from 9,215 to 9,752, the number of genes ranged from 

22,731 to 25,881, and the number of peaks ranges from 35,270 to 121,068.  

To preprocess the transcriptomic data, pixels expressing fewer than 200 genes and genes 

expressed fewer than 200 pixels were filtered out. Next, the gene expression counts were log-

transformed and normalized by library size via the SCANPY package 25. The top 3,000 highly 

variable genes (HVGs) were selected and used as input to PCA for dimensionality reduction. For 



consistency with the chromatin peak data, the first 50 principal components were retained and 

used as input to the encoder. For the chromatin peak data, we used LSI (latent semantic indexing) 

to reduce the raw chromatin peak counts data to 50 dimensions.  

Stereo-CITE-seq mouse thymus dataset Murine thymus tissue samples were investigated with 

Stereo-CITE-seq for spatial multi-omics by Liao et al.6. For our study, we employed data from four 

sections. The number of bins ranges from 4,228 to 4,697, the number of genes ranges from 

23,221 to 23,960, and the sample includes 19 or 51 proteins. For the transcriptomic data, we first 

filtered out genes expressed in fewer than 10 bins and bins with fewer than 80 gene expressed. 

The filtered gene expression counts were next log-transformed and normalized by library size via 

the SCANPY package 25. Finally, to reduce the dimensionality of the data, the top 3,000 highly 

variable genes (HVGs) were selected and used as input for PCA. To ensure a consistent input 

dimension with the ADT data, the first 22 principal components were retained and used as the 

input of the encoder. For the ADT data, we first filter out proteins expressed in fewer than 50 bins, 

resulting 22 proteins retained. The protein expression counts were then normalized using CLR 

(Centered Log Ratio) across each bin. PCA was then performed on the normalized data, and all 

22 principal components were used as the input of the encoder.  

SPOTS mouse spleen dataset Ben-Chetrit et al. 4 processed fresh frozen mouse spleen tissue 

samples and analyzed them using the 10x Genomics Visium system supplemented with DNA-

barcoded antibody staining. The antibodies (poly(adenylated) antibody-derived tags (ADTs)) 

enabled protein measurement alongside the transcriptome profiling by 10x Genomics Visium. The 

panel of 21 ADTs was designed to capture the markers of immune cells found in the spleen, 

including B cells, T cells, and macrophages. We employed two datasets (replicate 1 and 2) from 

the original study. The data contained 2,568 and 2,768 spots for replicates 1 and 2, respectively, 

with 32,285 genes captured per spot. For data pre-processing, we first filtered out genes 

expressed in fewer than 10 spots. The filtered gene expression counts were then log-transformed 

and normalized by library size using the SCANPY package 25. Finally, the top 3,000 HVGs were 

selected and used as input for PCA. We used the first 21 principal components as the input of the 

encoder to ensure a consistent input dimension with the ADT data. For the ADT data, we applied 

CLR normalization to the raw protein expression counts. PCA was then performed on the 

normalized data and the top 21 principal components were used as input to the encoder. 

The SpatialGlue framework 

SpatialGlue is a novel graph-based model with dual-attention mechanism that aims to learn a 

unified representation by fully exploiting the spatial location information and expression data from 

different omics modalities. Within each modality, SpatialGlue first learns a modality-specific 

representation using both spatial and omics data. Subsequently, it synthesizes an integrated 

cross-modality representation by aggregating these modality-specific representations. Compared 

to cross-omics integration first followed by spatial integration, our approach allows us to capture 

modality-specific spatial correlations between spots and integrate the spatial information in a 

modality-specific manner. 

We first consider a spatial multi-omics dataset with two different omics modalities, each with a 

distinct feature set 𝑋1 ∈ 𝑅𝑁×𝑑1 and 𝑋2 ∈ 𝑅𝑁×𝑑2 . 𝑁 denotes the number of spots in the tissue. 𝑑1 



and 𝑑2 are the numbers of features for two omics modalities, respectively. For example, in spatial-

epigenome-transcriptome, 𝑋1  and 𝑋2  refer to the sets of genes and chromatin regions 

respectively, while in Stereo-CITE-seq,  𝑋1  and 𝑋2  refer to the sets of genes and proteins, 

respectively. The primary objective of spatial multi-omics data integration is to learn a mapping 

function that can project the original individual modality data into a uniform latent space and then 

integrate the resulting representations. As shown in Figure 1a, the SpatialGlue framework 

consists of four major modules: (1) Modality-specific GCN encoder, (2) Within-Modality attention 

aggregation layer, (3) Between-Modality attention aggregation layer, and (4) Modality-specific 

GCN decoder. The details of each module are described next. Notably, here we demonstrate the 

SpatialGlue framework with two modalities. Benefiting from the modular design, SpatialGlue 

readily extends to spatial multi-omics data with more than two modalities.  

Construction of neighbor graph 

Assuming spots that are spatially adjacent in a tissue usually have similar cell types or cell states, 

we convert the spatial information to an undirected neighbor graph 𝐺𝑠 = (𝑉, 𝐸) with 𝑉 denoting 

the set of 𝑁 spots and 𝐸 denoting the set of connected edges between spots. Let 𝐴𝑠 ∈ 𝑅𝑁×𝑁 be 

the adjacent matrix of graph 𝐺𝑠, where 𝐴𝑠(𝑖, 𝑗) = 1 if and only if the Euclidean distance between 

spots 𝑖 and 𝑗 is less than specific neighbor number 𝑟, otherwise 0. In our examples, we select the 

top 𝑟 = 3 nearest spots as neighbors of a given spot for all datasets according to experimental 

results.  

In a complex tissue sample, it is possible for spots with the same cell types/states to be 

spatially non-adjacent to each other, or even far away. To capture the proximity of such spots in 

a latent space, we explicitly model the relationship between them using a feature graph. 

Specifically, we apply the k-nearest neighbor algorithm (KNN) on the PCA embeddings and 

construct the feature graph 𝐺𝑓
𝑚 = (𝑉𝑚, 𝐸𝑚), where 𝑉𝑚 and 𝐸𝑚 denote the sets of 𝑁 spots and 

connected edges between spots in the 𝑚 ∈ {1,2}-th modality, respectively. For a given spot, we 

choose the top 𝑘 nearest spots as its neighbors. By default, we set 𝑘 to 20 for all datasets. We 

use 𝐴𝑓
𝑚 ∈ 𝑅𝑁×𝑁 to denote the adjacency matrix of the feature graph 𝐺𝑓

𝑚. If spot 𝑗 ∈ 𝑉𝑚 is the 

neighbor of spot 𝑖 ∈ 𝑉𝑚, then  𝐴𝑓
𝑚(𝑖, 𝑗) = 1, otherwise 0.  

Graph convolutional encoder for individual modality 

Each modality (e.g., mRNA or protein) contains a unique feature distribution. To encode each 

modality in a low dimension embedding space, we use the graph convolution network (GCN) 26, 

an unsupervised deep graph network, as the encoder of our framework. The main advantage of 

GCNs is that it can capture the cell expression patterns and neighborhood microenvironment 

while preserving the high-level global patterns. For each modality, using the pre-processed 

features as inputs, we separately implement a GCN-encoder on the spatial adjacency graph 𝐺𝑠 

and the feature graph 𝐺𝑓 to learn graph-specific representations 𝐻. These two neighbor graphs 

reflect distinct topological semantic relationships between spots. The semantic information in the 

spatial graph denotes the physical proximity between spots while that in the feature graph denotes 

the phenotypic proximity of spots which have the same cell types/states but are spatially non-

adjacent to each other. This enables the encoder to capture different local patterns and 



dependencies of each spot by iteratively aggregating the representations from its neighbors.  

Specifically, the 𝑙-th (𝑙 ∈ {1,2, … , 𝐿 − 1, 𝐿}) layer representation in the encoder are formulated as 

follows: 

𝐻𝑠1
𝑙 = 𝜎(𝐴̃𝑠𝐻𝑠1

𝑙−1𝑊𝑒1
𝑙−1 + 𝑏𝑒1

𝑙−1), (1) 

𝐻𝑓1
𝑙 = 𝜎(𝐴̃𝑓

1𝐻𝑓1
𝑙−1𝑊𝑒1

𝑙−1 + 𝑏𝑒1
𝑙−1), (2) 

𝐻𝑠2
𝑙 = 𝜎(𝐴̃𝑠𝐻𝑠2

𝑙−1𝑊𝑒2
𝑙−1 + 𝑏𝑒2

𝑙−1), (3) 

𝐻𝑓2
𝑙 = 𝜎(𝐴̃𝑓

2𝐻𝑓2
𝑙−1𝑊𝑒2

𝑙−1 + 𝑏𝑒2
𝑙−1), (4) 

where 𝐴̃ = 𝐷−
1

2𝐴𝐷−
1

2 represents the normalized adjacency matrix of specific graph and 𝐷 is a 

diagonal matrix with diagonal elements being 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1 . In particular,  𝐴̃𝑠, 𝐴̃𝑓

1, and 𝐴̃𝑓
2 are the 

corresponding normalized adjacency matrices of the spatial graph, the feature graphs of 

modalities 1 and 2, respectively. 𝑊𝑒∙, and 𝑏𝑒∙ denote a trainable weight matrix and a bias vector, 

respectively. 𝜎(∙) is a nonlinear activation function such as the ReLU (Rectified Linear Unit). 

𝐻∙
𝑙  denotes the 𝑙-th layer output representation, and 𝐻𝑠1

0 = 𝐻𝑓1
0  and 𝐻𝑠2

0 = 𝐻𝑓2
0  are set as the input 

PCA embeddings of the original features 𝑋1 and 𝑋2 respectively. We also specify 𝐻∙
𝐿 ∈ 𝑅𝑑3, the 

output at the 𝐿-th layer, as the final latent representation of the encoder with 𝑑3 as the hidden 

dimension. 𝐻𝑠𝑚 and 𝐻𝑓𝑚 represent the latent representations derived from the spatial and feature 

graphs within modality 𝑚, respectively.  

Within-Modality attention aggregation layer 

For an individual modality, taking its pre-processed features and two graphs (i.e., spatial and 

feature graphs) as input, we can derive two graph-specific spot representations via the graph 

convolutional encoder, such as  𝐻𝑠1 and 𝐻𝑓1. To integrate the graph-specific representations, we 

design a Within-Modality attention aggregation layer following the encoder such that its output 

representation preserves expression similarity and spatial proximity. Given that different neighbor 

graphs can provide unique semantic information for each spot (as mentioned above), the 

aggregation layer is designed to integrate graph-specific representations in an adaptive manner 

by capturing the importance of each graph. As a result, we derive a modality-specific 

representation for each modality. Specifically, for a given spot 𝑖, we first subject its graph-specific 

representation ℎ𝑖
𝑡  to a linear transformation (i.e., a fully connected neural network), and then 

evaluate the importance of each graph by the similarity of the transformed representation and a 

trainable weight vector 𝑞. Formally, the attention coefficient 𝑒𝑖
𝑡, representing the importance of 

graph 𝑡 to the spot 𝑖, is calculated by: 

𝑒𝑖
𝑡 = 𝑞𝑇 ∙ tanh (𝑊𝑖

𝑖𝑛𝑡𝑟𝑎ℎ𝑖
𝑡 + 𝑏𝑖

𝑖𝑛𝑡𝑟𝑎), (5) 

where 𝑊𝑖
𝑖𝑛𝑡𝑟𝑎 and 𝑏𝑖

𝑖𝑛𝑡𝑟𝑎 are the trainable weight matrix and bias vector, respectively. To reduce 

the number of parameters in the model, all the trainable parameters are shared by the different 

graph-specific representations within each modality. To make the attention coefficient comparable 



across different graphs, a softmax function is applied to the attention coefficient to derive attention 

score 𝛼𝑖
𝑡. 

𝛼𝑖
𝑡 =

exp (𝑒𝑖
𝑡)

∑ exp (𝑒𝑖
𝑡)𝑇

𝑡=1
 , (6) 

where 𝑇 denotes the number of neighbor graphs (set to 2 here).  𝛼𝑖
𝑡 represents the semantic 

contribution of the 𝑡-th neighbor graph to the representation of spot 𝑖. A higher value of 𝛼𝑖
𝑡 means 

greater contribution.  

Subsequently, the final representation 𝑌𝑚  in the 𝑚 -th modality can be generated by 

aggregating graph-specific representations according to their attention scores: 

𝑦𝑖
𝑚=∑ 𝛼𝑖

𝑡 ∙ ℎ𝑖
𝑡𝑇

𝑡=1  (7) 

such that 𝑦𝑖
𝑚 ∈ 𝑅𝑑3 preserves the raw spot expressions, spot expression similarity, and spatial 

proximity within modality 𝑚.   

Between-Modality attention aggregation layer 

Each individual omics modality provides a partial view of a complex tissue sample, thus requiring 

an integrated analysis to obtain a comprehensive picture. These views can contain both 

complementary and contradictory elements, and thus different importance should be assigned to 

each modality to achieve coherent data integration. Here we use a Between-Modality attention 

aggregation layer to adaptively integrate the different data modalities. This attention aggregation 

layer will focus on the more important omics modality by assigning greater weight values to the 

corresponding representation. Like the Within-Modality layer, we first learn the importance of 

modality 𝑚 by calculating the following coefficient 𝑔𝑖
𝑚: 

𝑔𝑖
𝑚 = 𝑣𝑇 ∙ tanh (𝑊𝑖

𝑖𝑛𝑡𝑒𝑟𝑦𝑖
𝑚 + 𝑏𝑖

𝑖𝑛𝑡𝑒𝑟), (8) 

where 𝑔𝑖
𝑚  is attention coefficient that represents the importance of the modality 𝑚  to the 

representation of spot 𝑖 .  𝑊𝑖𝑛𝑡𝑒𝑟 , 𝑏𝑖𝑛𝑡𝑒𝑟 , and 𝑣  are learnable weight and bias variables, 

respectively. Similarly, we further normalize the attention coefficients using the softmax function: 

𝛽𝑖
𝑚 =

exp (𝑔𝑖
𝑚)

∑ exp (𝑔𝑖
𝑚)𝑀

𝑚=1
, (9) 

where 𝛽𝑖
𝑚 is the normalized attention score that represents the contribution of the modality 𝑚 to 

the representation of spot 𝑖. 𝑀 is the number of modalities. 

Finally, we derive the final representation matrix 𝑍 by aggregating each modality-specific 

representation according to attention score 𝛽: 

𝑧𝑖=∑ 𝛽𝑖
𝑚 ∙ 𝑦𝑖

𝑚𝑀
𝑚=1 . (10) 

After model training, the latent representation 𝑧𝑖 ∈ 𝑅𝑑3 can be used in various downstream 

analyses, including clustering, visualization, and DEG detection.  



Model training of SpatialGlue 

The resulting model is trained jointly with two different loss functions, i.e., reconstruction loss and 

correspondence loss. Each loss function is described as follows.  

Reconstruction loss To enforce the learned latent representation to preserve the expression 

profiles from different modalities, we design an individual decoder for each modality to reverse 

the integrated representation 𝑍 back into the normalized expression space. Specifically, by taking 

output 𝑍  from the Between-Modality attention aggregation layer as input, the reconstructed 

representations 𝐻̂1
𝑙  and 𝐻̂2

𝑙  from the decoder at the 𝑙-th (𝑙 ∈ {1,2, … , 𝐿 − 1, 𝐿}) layer are formulated 

as follows:  

𝐻̂1
𝑙 = 𝜎(𝐴̃𝑠𝑍1

𝑙−1𝑊𝑑1
𝑙−1 + 𝑏𝑑1

𝑙−1), (11) 

𝐻̂2
𝑙 = 𝜎(𝐴̃𝑠𝑍1

𝑙−1𝑊𝑑2
𝑙−1 + 𝑏𝑑2

𝑙−1), (12) 

where 𝑊𝑑1, 𝑊𝑑2, 𝑏𝑑1, and 𝑏𝑑2 are trainable weight matrices and bias vectors, respectively. 𝐻̂1
𝑙  and 

𝐻̂2
𝑙  represent the reconstructed expression matrices for the omics modalities 1 and 2, respectively. 

SpatialGlue’s objective function to minimize the expression reconstruction loss is as 

follows: 

ℒ𝑟𝑒𝑐𝑜𝑛 = 𝛾1 ∑ ‖𝑥𝑖
1 − ℎ̂𝑖

1‖
𝐹

2𝑁
𝑖=1  +𝛾2 ∑ ‖𝑥𝑖

2 − ℎ̂𝑖
2‖

𝐹

2𝑁
𝑖=1 , (13) 

where 𝑥1 and 𝑥2 represent the original features of the modalities 1 and 2, respectively.  𝛾1 and 𝛾2 

are weight factors that are utilized to balance the contribution of different modalities. Due to the 

differences of sequencing technologies and molecular types, the feature distributions of different 

omics assays can vary significantly. As such, the weight factors also vary between different spatial 

multi-omics technologies but are fixed for datasets obtained using the same omics technology. 

Correspondence loss While reconstruction loss can enforce the learned latent representation to 

simultaneously capture the expression information of different modality data, it does not 

guarantee that the representation manifolds are fully aligned across modalities.  To deal with the 

issue, we add a correspondence loss function. Correspondence loss aims to force consistency 

between a modality-specific representation 𝑌 and its corresponding representation 𝑌̂ obtained 

through the decoder-encoder of another modality. Mathematically, the correspondence loss is 

defined as follows: 

ℒ𝑐𝑜𝑟𝑟 = 𝛾3 ∑ ‖𝑦𝑖
1 − 𝑦̂𝑖

1‖
𝐹

2𝑁
𝑖=1  +𝛾4 ∑ ‖𝑦𝑖

2 − 𝑦̂𝑖
2‖

𝐹

2𝑁
𝑖=1 , (14) 

𝑌̂1
𝑙 = 𝜎 (𝐴̃𝑠 (𝜎(𝐴̃𝑠𝑌1

𝑙−1𝑊𝑑2
𝑙−1 + 𝑏𝑑2

𝑙−1)) 𝑊𝑒2
𝑙−1 + 𝑏𝑒2

𝑙−1), (15) 

𝑌̂2
𝑙 = 𝜎 (𝐴̃𝑠 (𝜎(𝐴̃𝑠𝑌2

𝑙−1𝑊𝑑1
𝑙−1 + 𝑏𝑑1

𝑙−1)) 𝑊𝑒1
𝑙−1 + 𝑏𝑒1

𝑙−1). (16) 



where 𝛾3 and 𝛾4 are hyper-parameters, controlling the influences of different modality data. We 

set 𝑌̂1
0 = 𝑌1 and 𝑌̂2

0 = 𝑌2. 𝜎(∙) which is a nonlinear activation function, i.e., ReLU (Rectified Linear 

Unit). 

Therefore, the overall loss function used for model training is defined as: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑟𝑒𝑐𝑜𝑛 + ℒ𝑐𝑜𝑟𝑟. (17) 

Implementation details of SpatialGlue 

For all datasets, a learning rate of 0.0001 was used. To account for differences in feature 

distribution across the datasets, a tailored group of weight factors [𝛾1, 𝛾2, 𝛾3, 𝛾4] was empirically 

assigned to each one. The weight factors were [1, 5, 1, 1] for the SPOTS mouse spleen dataset, 

[1,5,1,10] for the 10x Genomics Visium human lymph node dataset, [1, 10, 1, 10] for the Stereo-

CITE-seq mouse thymus dataset, [1, 5, 1, 1] for the spatial-epigenome-transcriptome mouse brain 

dataset. We also provided a default parameter set that would work for most users on most data 

types. The training epochs used for the SPOTS mouse spleen, 10x Genomics Visium human 

lymph node, Stereo-CITE-seq mouse thymus, and spatial-epigenome-transcriptome mouse brain 

datasets were 600, 200, 1500, and 1600, respectively.  

Data and detailed methods 

For details on the datasets, downstream analyses, competing methods, and metrics employed, 

please see the supplementary file.  

Data availability 

The SPOTS mouse spleen data was obtained from the GEO repository (accession no. 

GSE198353, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE198353) 4, the Stereo-

CITE-seq mouse thymus data from BGI and  the spatial-epigenome-transcriptome mouse brain 

data from AtlasXplore (https://web.atlasxomics.com/visualization/Fan) 3. The details of all 

datasets used are available in the Methods section. The data used as input to the methods tested 

in this study, inclusive of the Stereo-CITE-seq and the in-house human lymph node data have 

been uploaded to Zenodo and is freely available at 

https://zenodo.org/record/7879713#.ZE3aOnZByUk. 

Code availability 

An open-source Python implementation of the SpatialGlue toolkit is accessible at 

https://github.com/JinmiaoChenLab/SpatialGlue. 
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Figure legends 

Figure 1: Interpretable deep dual-attention model that enables accurate identification of spatial 

domains in simulated and real data. (a) Overview of the SpatialGlue framework. Spatial multi-

omics experiment to simultaneously measure two distinct types of molecules, such as RNA and 

surface protein, while preserving spatial context of the tissue. SpatialGlue first uses the K-nearest 

neighbor (KNN) algorithm to construct a spatial neighbor graph using the spatial coordinates and 

a feature neighbor graph with the normalized expression data for each omics modality. Then for 

each modality, a GNN-encoder takes in the normalized expressions and the neighbor graph to 

learn two graph-specific representations by iteratively aggregating representations of neighbors. 

To capture the importance of different graphs, we designed a Within-Modality attention 

aggregation layer to adaptively integrate graph-specific representations and obtain a modality-

specific representation. Finally, to preserve the importance of different modalities, SpatialGlue 

uses a Between-Modality attention aggregation layer to adaptively integrate modality-specific 

representations and output the final integrated representation of spots. (b) Spatial plots of the 

simulated data, from left to right: ground truth, generated raw data of individual modalities, and 

clustering results by single-cell and spatial multi-omics integration methods, Seurat, totalVI, 

MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. ‘backgr’ means background. (c) 

Density distribution of the simulated data modalities. (d) Modality weights of different modalities, 

denoting their importance to the integrated output of SpatialGlue. (e) Quantitative evaluation of 

methods with six supervised metrics. (f) Boxplots of the six metrics with the scores from 5 

simulated datasets. (g) Manual annotation of human lymph node sample A1. (h) Spatial plots of 

lymph node sample A1, clustering of individual RNA and protein modalities (left), clustering results 

(right) from single and spatial multi-omics integration methods, Seurat, totalVI, MultiVI, MOFA+, 

MEFISTO, scMM, StabMap, and SpatialGlue. Note that the colors of clusters do not directly 

correspond to the same captured structures across different methods. (i) Boxplots of Moran’s I 

score of the eight methods. (j) Jaccard similarity scores of the eight methods. (k) Boxplots of six 

supervised metrics with scores of clustering results with the number of clusters ranging from 4 to 

11.  

Figure 2: SpatialGlue dissects spatial-epigenome-transcriptome mouse brain samples at higher 

resolution. (a) Annotated reference of the mouse brain coronal section from the Allen Mouse Brain 

Atlas. (b) Spatial plots of the RNA-seq and ATAC-seq data with unimodal clustering (left), and 

clustering results (right) from single-cell and spatial multi-omics integration methods, Seurat, 

MultiVI, MOFA+, scMM, StabMap, and SpatialGlue. The annotated labels correspond to 

SpatialGlue’s results and the clustering colors do not necessarily capture the same structures 

across other methods. The full names of the abbreviation used are, ctx: cerebral cortex, cp: 

caudoputamen, vl: lateral ventricle, lpo: lateral preopic area, aca: anterior cingulate area, ls: lateral 

septal nucleus, aco: anterior commissure, olfactory limb, acb: nucleus accumbens, cc: corpus 

callosum. (c) Boxplots of Moran’s I score of the six methods. (d) Comparison of Jaccard similarity 

scores of the six methods. (e) Modality weights of different modalities, denoting their importance 

to the integrated output of SpatialGlue. (f) Spatial plots of the RNA-seq and CUT&Tag-seq 



(H3K27ac) data with unimodal clustering (left), and clustering results (right) from single-cell and 

spatial multi-omics integration methods, Seurat, MultiVI, MOFA+, scMM, StabMap, and 

SpatialGlue. The annotated labels correspond to SpatialGlue’s results and the clustering colors 

do not necessarily capture the same structures across other methods. (g) Boxplots of Moran’s I 

score of the six methods. (h) Comparison of Jaccard similarity scores of the six methods. (i) 

Modality weights of different modalities, denoting their importance to the integrated output of 

SpatialGlue. (j) Heatmap of differentially expressed genes for each cluster (k) Heatmap of 

differentially expressed peaks for each cluster. (l) Heatmap of peak-to-gene links. 

Figure 3: SpatialGlue accurately integrates multi-modal data from the mouse thymus (RNA and 

protein acquired with Stereo-CITE-seq) and mouse spleen (RNA and protein acquired using 

SPOTS). (a) Spatial plots of RNA and protein data (mouse thymus acquired with Stereo-CITE-

seq) with unimodal clustering (left), and comparison of clustering results (right) from single-cell 

and spatial multi-omics integration methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, 

StabMap, and SpatialGlue. The annotated labels correspond to SpatialGlue’s results and the 

clustering colors do not necessarily capture the same structures across other methods. (b) 

Boxplots of Moran’s I score of the eight methods. (c) Comparison of Jaccard similarity scores of 

the eight methods. (d) Modality weights of different modalities, denoting their importance to the 

integrated output of SpatialGlue. (e) Histology image of the mouse spleen replicate 1 sample. (f) 

Spatial plots RNA and protein data (mouse spleen acquired using SPOTS) with unimodal 

clustering (left), and clustering results (right) from single-cell and spatial multi-omics integration 

method, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. The full 

names of the abbreviations RpMΦ, MMMΦ, and MZMΦ are red pulp macro, CD169+ MMM, 

CD209a+ MZM, respectively. (g) Boxplots of Moran’s I score of the eight methods. (h) 

Comparison of Jaccard similarity scores of the eight methods. (i) Modality weights of different 

modalities, denoting their importance to the integrated output of SpatialGlue. (j) Heatmap of 

differentially expressed ADTs for each cluster. (k) Normalized ADT levels of key surface markers 

for T cells (CD3, CD4, CD8), B cells (IgD, B220, CD19) and RpMΦ (F4_80, CD68, CD163). (l) 

Violin plots of two marker genes in the MMMΦ, MZMΦ, and RpMΦ clusters.  

Supplementary figures 

Figure S1: (a) SpatialGlue’s within-modality weights for the importance of spatial and feature 

graphs with simulation data 1. (b) Simulated data 2 ground truth, unimodal clustering of 

modalities, and integration results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, 

StabMap, and SpatialGlue. (c) Density distribution of the simulated data modalities. (d) 

Quantitative comparison of the eight methods with six measurement metrics, homogeneity, 

mutual information, V measure score, adjusted mutual information (AMI), normalized mutual 

information (NMI), and adjusted rand index (ARI). (e) SpatialGlue’s between-modality weights 

explaining the importance of each modality to each cluster. (f) Within-modality weights for the 

importance of spatial and feature graphs. 

Figure S2: (a) Simulated data 3 ground truth, unimodal clustering of modalities, and integration 

results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (b) 

Density distribution of the simulated data modalities. (c) Quantitative comparison of the eight 



methods with six measurement metrics, homogeneity, mutual information, V measure score, 

adjusted mutual information (AMI), normalized mutual information (NMI), and adjusted rand index 

(ARI). (d) SpatialGlue’s between-modality weights explaining the importance of each modality to 

each cluster. (e) Within-modality weights for the importance of spatial and feature graphs. 

Figure S3: (a) Simulated data 4 ground truth, unimodal clustering of modalities, and integration 

results from Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (b) 

Density distribution of the simulated data modalities. (c) Quantitative comparison of the eight 

methods with six measurement metrics, homogeneity, mutual information, V measure score, 

adjusted mutual information (AMI), normalized mutual information (NMI), and adjusted rand index 

(ARI). (d) SpatialGlue’s between-modality weights explaining the importance of each modality to 

each cluster. (e) Within-modality weights for the importance of spatial and feature graphs. (f) 

Ground truth, unimodal clustering of modalities, and integration results from Seurat, totalVI, 

MultiVI, MOFA+, MEFISTO, scMM, StabMap, and SpatialGlue. (g) Density distribution of the 

simulated data modalities. (h) Quantitative comparison of the eight methods with six 

measurement metrics, homogeneity, mutual information, V measure score, adjusted mutual 

information (AMI), normalized mutual information (NMI), and adjusted rand index (ARI). (i) 

SpatialGlue’s between-modality weight explaining the importance of each modality to each 

cluster. (j) Within-modality weights for the importance of spatial and feature graphs.  

Figure S4: Evaluation of SpatialGlue on simulated triple omics data. (a) ground truth and spatial 

plots of modalities 1, 2, 3, and SpatialGlue. (b) Density distribution of simulated data modalities. 

(c) SpatialGlue’s between modality weights explaining the importance of each modality to each 

cluster. (d) Within-modality weights for the importance of spatial and feature graphs.  

Figure S5: Ablation study to validate the contribution of each component to the performance of 

the SpatialGlue model. The ablation study was conducted using the simulated data 1. (a) Ground 

truth. (b) Spatial clustering of modalities 1 and 2. (c) Comparison of SpatialGlue and its variants, 

i.e., using concatenation (C) instead of attention (A) for intra-modality integration (SpatialGlue-

CA), using concatenation instead of attention inter-modality for integration (SpatialGlue-AC), and 

using concatenation instead of attention for both intra- and inter-modality integration (SpatialGlue-

CC). (d) Quantitative evaluation of SpatialGlue and variants (CA, AC, CC) with the six supervised 

metrics. (e) Clustering results of SpatialGlue and the non-spatial variant (SpatialGlue w/o spatial). 

(f) Quantitative comparison of SpatialGlue with ‘SpatialGlue w/o spatial’. (g) Comparison of 

SpatialGlue and the variant of SpatialGlue without PCA (SpatialGlue-full). (h) Quantitative 

comparison of SpatialGlue with ‘SpatialGlue-full’.  

Figure S6: Comparison between SpatialGlue and single-modal methods on simulated and real 

(mouse brain P22 sample acquired using spatial-ATAC-RNA-seq) data. (a) Ground truth of the 

simulated data. (b) Comparison between SpatialGlue and single-modal methods, SpaGCN, 

STAGATE, and GraphST on the simulated data. (c) Quantitative evaluation using six supervised 

metrics. (d) Comparison between SpatialGlue and single-modal methods on the mouse brain P22 

sample data. (e) Comparison of Moran’s I score. (f) Comparison of Jaccard Similarity scores.  



Figure S7: (a) Comparison of clustering results with different numbers of neighbors k to illustrate 

SpatialGlue’s sensitivity to parameters. (b) Supervised metrics on the clustering results. (c) 

Comparison of clustering results with different number of PCs to illustrate SpatialGlue’s sensitivity 

to input dimensionality. (d) Supervised metrics on the clustering results. (e) Comparison of 

clustering results with different numbers of GNN layers to illustrate SpatialGlue’s sensitivity to 

input dimensionality. (f) Supervised metrics on the clustering results. (g) Time complexity of 

SpatialGlue and competing methods (Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, 

StabMap). 

Figure S8: (a) SpatialGlue’s between-modality weight explaining the importance of each modality 

to each cluster for the lymph node A1 sample. (b) Within-modality weights for the RNA and protein 

modalities explaining the contributions of the spatial and feature graphs to each cluster. (c) 

Quantitative evaluation of SpatialGlue and competing methods. (d) Ground truth for the lymph 

node D1 sample. (e) Spatial plots of RNA and protein data (left), and clustering results of single-

cell and spatial multi-omics methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, 

StabMap, and SpatialGlue. (f) Comparison of Moran’s I score. (g) Comparison of Jaccard 

Similarity scores. (h) Quantitative evaluation with six supervised metrics. (i)  Boxplots of six 

supervised metrics for clustering results with number of clusters ranging from 4 to 11. (j) Between-

modality weights explaining the importance of each modality to each cluster. (k) Within-modality 

weights for the RNA and protein modalities explaining the contributions of the spatial and feature 

graphs to each cluster.  

Figure S9: Heatmap of differentially expressed ADTs for each cluster for the human lymph node 

A1 (a) and D1 (b) samples. 

Figure S10: ADT intensity plots of the lymph node A1 sample. 

Figure S11: ADTs intensity plots of the lymph node D1 sample. 

Figure S12: (a) Separate spatial plots of all clusters identified by SpatialGlue in the mouse brain 

P22 sample (spatial-ATAC-RNA-seq). (b) Separate spatial plots of all clusters identified by 

SpatialGlue in the mouse brain P22 sample (spatial-CUT&Tag-RNA-seq, H3K27ac). (c) Within-

modality weights for the RNA and ATAC modalities explaining the importance of the spatial and 

feature graphs to each cluster. (d) Within-modality weights for the RNA and CUT&Tag (H3K27ac) 

modalities explaining the importance of the spatial and feature graphs to each cluster. (e) Modality 

weights of Seurat when applied to the spatial-ATAC-RNA-seq sample. (f) Modality weights of 

Seurat when applied to the spatial-CUT&Tag-RNA-seq (H3K27ac) sample.  

Figure S13: (a) Intensity plots of marker genes in the mouse brain P22 sample (spatial-CUT&Tag-

RNA-seq, H3K27ac). (b) Normalized gene activity scores from Zhang et al. (c) Peak-to-gene links 

plots. 

Figure S14: (a) Results of the mouse brain P22 sample acquired with RNA-seq and CUT&Tag-

seq (H3K4me3). Spatial plots of data modalities with unimodal clustering (left), and clustering 

results (right) from single-cell and spatial multi-omics integration methods, Seurat, MultiVI, 



MOFA+, scMM, StabMap, and SpatialGlue. (b) Comparison of Moran’s I score. (c) Comparison 

of Jaccard Similarity scores. (d) Between-modality weights explaining the importance of each 

modality to each cluster. (e) Within-modality weights explaining the contributions of the spatial 

and feature graphs to each cluster for each modality. (f) Comparison of spatial clustering using 

Seurat with 10 and 50 PC dimensions in the mouse brain P22 spatial-ATAC-RNA-seq sample. 

(g) Comparison of SpatialGlue and its variants, i.e., SpatialGlue without reconstruction loss 

(‘SpatialGlue w/o recon’) and SpatialGlue without correspondence loss (‘SpatialGlue w/o corr’), 

in the mouse brain P22 spatial-ATAC-RNA-seq sample. (h) Comparison of Moran’s I score of 

SpatialGlue and its two variants.  

Figure S15: Results of the mouse brain P22 sample acquired with RNA-seq and CUT&Tag-seq 

(H3K27me3). Spatial plots of data modalities with unimodal clustering (left), and clustering results 

(right) from single-cell and spatial multi-omics integration methods, Seurat, MultiVI, MOFA+, 

scMM, StabMap, and SpatialGlue. (b) Comparison of Moran’s I score. (c) Comparison of Jaccard 

Similarity scores. (d) Between-modality weights explaining the importance of each modality to 

each cluster. (e) Within-modality weights explaining the contributions of the spatial and feature 

graphs to each cluster for each modality. 

Figure S16: Additional results for the mouse thymus 1 sample. (a) dsDNA image. (b) Total mRNA 

counts. (c) Modality weight from Seurat when applied to the sample. (d) Within-modality weights 

of SpatialGlue explaining the contributions of the spatial and feature graphs to each cluster for 

each modality. (e) Separate spatial plots of all clusters identified by SpatialGlue. (f) Expression of 

marker genes and proteins for each cell type.  

Figure S17: Results for the mouse thymus 2 sample. (a) Spatial plots of data modalities with 

unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics 

integration methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 

SpatialGlue. (b) Comparison of Moran’s I score. (c) Comparison of Jaccard Similarity scores. (d) 

Between-modality weight explaining the importance of each modality to each cluster. (e) Within-

modality weights explaining the contributions of the spatial and feature graphs to each cluster for 

each modality.  

Figure S18: Results for the mouse thymus 3 sample. (a) Spatial plots of data modalities with 

unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics 

integration methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 

SpatialGlue. (b) Comparison of Moran’s I score. (c) Comparison of Jaccard Similarity scores. (d) 

Between-modality weight explaining the importance of each modality to each cluster. (e) Within-

modality weights explaining the contributions of the spatial and feature graphs to each cluster for 

each modality.  

Figure S19: Results for the mouse thymus 4 sample. (a) Spatial plots of data modalities with 

unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics 

integration methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, StabMap, and SpatialGlue. (b) 

Comparison of Moran’s I score. (c) Comparison of Jaccard Similarity scores. (d) Between-

modality weight explaining the importance of each modality to each cluster. (e) Within-modality 



weights explaining the contributions of the spatial and feature graphs to each cluster for each 

modality.  

Figure S20: Heatmap of differentially expressed ADTs for each cluster from the mouse thymus 

1 (a), 2 (b), 3 (c), and 4 (d) samples. 

Figure S21: Intensity plots of ADTs for the mouse thymus 1 sample. 

Figure S22: Intensity plots of ADTs for the mouse thymus 2 sample. 

Figure S23: Intensity plots of ADTs for the mouse thymus 3 (a) and 4 (b) samples. 

Figure S24: Results for the mouse spleen replicate 1 sample. (a) Spatial plots of SpatialGlue’s 

clusters together (left) and separate (right). (b) UMAP plots of the RNA and protein data modalities 

(left), and spatial plot of SpatialGlue’s clusters (right). (c) Comparison of fraction of nearest 

neighbors metric for each annotated cluster calculated by the different modalities (original RNA 

and protein expression). (d) Neighborhood enrichment of cell type pairs. (e) Cluster co-occurrence 

scores for each cluster at increasing distances. (f) Spatial plots of the RNA and protein data 

modalities. (g) Cross tabulation heatmap of the clustering labels between the RNA and protein 

data.  

Figure S25: Results for the mouse spleen replicate 1(a-c) and 2(d-h) samples. (a) Cross 

tabulation heatmap for the number of clusters between the RNA and protein data. (b) Modality 

weights from Seurat. (c) Within-modality weights of SpatialGlue explaining the contributions of the 

spatial and feature graphs to each cluster for each modality. (d) Spatial plots of data modalities 

with unimodal clustering (left), and clustering results (right) from single-cell and spatial multi-omics 

integration methods, Seurat, totalVI, MultiVI, MOFA+, MEFISTO, scMM, StabMap, and 

SpatialGlue. (e) Comparison of Moran’s I score. (f) Comparison of Jaccard Similarity scores. (g) 

Between-modality weight explaining the importance of each modality to each cluster. (h) Within-

modality weights explaining the contributions of the spatial and feature graphs to each cluster for 

each modality.  

 


